Smoothed least absolute deviation estimation methods

被引:0
|
作者
He, Yanfei [1 ]
Xuan, Wenhui [1 ]
Shi, Jianhong [1 ]
Yu, Ping [1 ]
机构
[1] Shanxi Normal Univ, Sch Math & Comp Sci, Taiyuan 030031, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Least absolute deviation; smoothed least absolute deviation; robust estimation; heteroscedasticity;
D O I
10.1080/03610926.2024.2430739
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The estimator of the vector parameter in a linear regression, known as the least absolute deviation (LAD) estimator, is defined by minimizing the sum of the absolute values of the residuals. However, the loss function lacks differentiability. In this study, we propose a convolution-type kernel smoothed least absolute deviation (SLAD) estimator based upon smoothing the objective function within the context of linear regression. Compared with the LAD estimator, the loss function of SLAD estimator is asymptotically differentiable, and the resulting SLAD estimator can yield a lower mean squared error. Furthermore, we demonstrate several interesting asymptotic properties of the SLAD method. Numerical studies and real data analysis confirm that the proposed SLAD method performs remarkably well under finite sample sizes.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A Joint Least Squares and Least Absolute Deviation Model
    Duan, Junbo
    Idier, Jerome
    Wang, Yu-Ping
    Wan, Mingxi
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (04) : 543 - 547
  • [22] Robust estimation of derivatives using locally weighted least absolute deviation regression
    Wang, Wen Wu
    Yu, Ping
    Lin, Lu
    Tong, Tiejun
    Journal of Machine Learning Research, 2019, 20
  • [23] Robust Estimation of Derivatives Using Locally Weighted Least Absolute Deviation Regression
    Wang, WenWu
    Yu, Ping
    Lin, Lu
    Tong, Tiejun
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [24] Least absolute deviation estimation for AR(1) processes with roots close to unity
    Ma, Nannan
    Sang, Hailin
    Yang, Guangyu
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2023, 75 (05) : 799 - 832
  • [25] Least absolute deviation estimation for all-pass time series models
    Breidt, FJ
    Davis, RA
    Trindade, AA
    ANNALS OF STATISTICS, 2001, 29 (04): : 919 - 946
  • [26] Least Absolute Deviation Estimation for Uncertain Vector Autoregressive Model with Imprecise Data
    Zhang, Guidong
    Shi, Yuxin
    Sheng, Yuhong
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2023, 31 (03) : 353 - 370
  • [27] Least absolute deviation estimation for AR(1) processes with roots close to unity
    Nannan Ma
    Hailin Sang
    Guangyu Yang
    Annals of the Institute of Statistical Mathematics, 2023, 75 : 799 - 832
  • [28] Least absolute deviation estimation for AR(1) processes with roots close to unity
    Zhengzhou Zhongyuan Sub-branch, Agricultural Bank of China, 101 Funiu Road, Zhongyuan District, Henan, Zhengzhou
    450007, China
    不详
    MS
    38677, United States
    不详
    450001, China
    Annal. Inst. Stat. Math., 5 (799-832): : 799 - 832
  • [29] LEAST ABSOLUTE DEVIATION ESTIMATION FOR GENERAL ARMA TIME SERIES MODELS WITH INFINITE VARIANCE
    Wu, Rongning
    STATISTICA SINICA, 2011, 21 (02) : 779 - 805
  • [30] Least tail-trimmed absolute deviation estimation for autoregressions with infinite/finite variance
    Wu, Rongning
    Cui, Yunwei
    ELECTRONIC JOURNAL OF STATISTICS, 2018, 12 (01): : 941 - 959