When Robots Get Chatty: Grounding Multimodal Human-Robot Conversation and Collaboration

被引:0
|
作者
Allgeuer, Philipp [1 ]
Ali, Hassan [1 ]
Wermter, Stefan [1 ]
机构
[1] Univ Hamburg, Dept Informat, Knowledge Technol, Hamburg, Germany
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT IV | 2024年 / 15019卷
关键词
Natural Dialog for Robots; LLM Grounding; AI-Enabled Robotics; Multimodal Interaction;
D O I
10.1007/978-3-031-72341-4_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate the use of Large Language Models (LLMs) to equip neural robotic agents with human-like social and cognitive competencies, for the purpose of open-ended human-robot conversation and collaboration. We introduce a modular and extensible methodology for grounding an LLM with the sensory perceptions and capabilities of a physical robot, and integrate multiple deep learning models throughout the architecture in a form of system integration. The integrated models encompass various functions such as speech recognition, speech generation, open-vocabulary object detection, human pose estimation, and gesture detection, with the LLM serving as the central text-based coordinating unit. The qualitative and quantitative results demonstrate the huge potential of LLMs in providing emergent cognition and interactive language-oriented control of robots in a natural and social manner. Video: https://youtu.be/A2WLEuiM3-s.
引用
收藏
页码:306 / 321
页数:16
相关论文
共 50 条
  • [21] A Framework and Algorithm for Human-Robot Collaboration Based on Multimodal Reinforcement Learning
    Cai, Zeyuan
    Feng, Zhiquan
    Zhou, Liran
    Ai, Changsheng
    Shao, Haiyan
    Yang, Xiaohui
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [22] Affective Grounding in Human-Robot Interaction
    Jung, Malte F.
    PROCEEDINGS OF THE 2017 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI'17), 2017, : 263 - 273
  • [23] What is the Role of Anthropomorphism When Robots Make Mistakes? Trading off Anthropomorphism in Imperfect Human-Robot Collaboration
    Sun, Chuyang
    Ma, Nan
    Tang, Rixin
    INTERNATIONAL JOURNAL OF SOCIAL ROBOTICS, 2025, : 609 - 625
  • [24] Human-robot collaboration: A survey
    Bauer, Andrea
    Wollherr, Dirk
    Buss, Martin
    INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS, 2008, 5 (01) : 47 - 66
  • [25] Explainability for Human-Robot Collaboration
    Yadollahi, Elmira
    Romeo, Marta
    Dogan, Fethiye Irmak
    Johal, Wafa
    De Graaf, Maartje
    Levy-Tzedek, Shelly
    Leite, Iolanda
    COMPANION OF THE 2024 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION, HRI 2024 COMPANION, 2024, : 1364 - 1366
  • [26] Human-Robot Collaboration: A Survey
    Chandrasekaran, Balasubramaniyan
    Conrad, James M.
    IEEE SOUTHEASTCON 2015, 2015,
  • [27] Expectedness in Human-Robot Collaboration
    Shayganfar, Mahni
    Rich, Charles
    Sidner, Candace L.
    AAMAS'16: PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, 2016, : 1271 - 1272
  • [28] Safety in human-robot collaboration
    Hofbaur, M.
    Rathmair, M.
    ELEKTROTECHNIK UND INFORMATIONSTECHNIK, 2019, 136 (07): : 301 - 306
  • [29] Human modeling for human-robot collaboration
    Hiatt, Laura M.
    Narber, Cody
    Bekele, Esube
    Khemlani, Sangeet S.
    Trafton, J. Gregory
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2017, 36 (5-7): : 580 - 596
  • [30] Safe Collision and Clamping Reaction for Parallel Robots During Human-Robot Collaboration
    Mohammad, Aran
    Schappler, Moritz
    Habich, Tim-Lukas
    Ortmaier, Tobias
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 5966 - 5973