The Θ-Hilfer fractional order model for the optimal control of the dynamics of Hepatitis B virus transmission

被引:0
|
作者
Ramalakshmi, K. [1 ]
Vadivoo, B. Sundara [2 ]
Nisar, Kottakkaran Sooppy [3 ,4 ]
Alsaeed, Suliman [5 ]
机构
[1] Alagappa Univ, Dept Math, Karaikkudi 630004, India
[2] Cent Univ Tamil Nadu, Dept Math, Thiruvarur 610005, India
[3] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Alkharj, Dept Math, Alkharj 11942, Saudi Arabia
[4] SIMATS, Saveetha Sch Engn, Chennai, India
[5] Umm Al Qura Univ, Coll Sci, Math Dept, Mecca, Saudi Arabia
来源
关键词
Hepatitis B virus; Fractional optimal control problems; Theta-Hilfer derivative; NS2LIM; EPIDEMIOLOGY; INFECTION;
D O I
10.1016/j.rico.2024.100496
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study examines the mathematical model of Hepatitis B Virus (HBV) dynamics, focusing on its various stages of infection, including acute and chronic phases, and transmission pathways. By utilizing mathematical modeling and fractional calculus techniques with the Theta-Hilfer operator, we analyze the epidemic's behavior. The research proposes control strategies, such as treatment and vaccination, aimed at reducing both acute and chronic infections. To achieve optimal control, we employ Pontryagin's Maximum Principle. Through simulations, we demonstrate the effectiveness of our approach using the Non-Standard Two-Step Lagrange Interpolation Method (NS2LIM), supported by numerical findings and graphical representations. Additionally, we identify two control variables to minimize the populations of acute and chronic infections while enhancing recovery rates.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Stability Analysis and Optimal Control of a Fractional Order Synthetic Drugs Transmission Model
    Das, Meghadri
    Samanta, Guruprasad
    De la sen, Manuel
    MATHEMATICS, 2021, 9 (07)
  • [22] Analysis and Optimal Control of Fractional-Order Transmission of a Respiratory Epidemic Model
    Yaro D.
    Apeanti W.O.
    Akuamoah S.W.
    Lu D.
    International Journal of Applied and Computational Mathematics, 2019, 5 (4)
  • [23] A fractional order differential equation model for Hepatitis B virus with saturated incidence
    Simelane, S. M.
    Dlamini, P. G.
    RESULTS IN PHYSICS, 2021, 24
  • [24] Modeling of Hepatitis B Virus Transmission with Fractional Analysis
    Khan, Muhammad
    Khan, Tahir
    Ahmad, Imtiaz
    Shah, Zahir
    Khan, Alamzeb
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [25] Optimal control for an age-structured model for the transmission of hepatitis B
    Ramses Djidjou Demasse
    Jean-Jules Tewa
    Samuel Bowong
    Yves Emvudu
    Journal of Mathematical Biology, 2016, 73 : 305 - 333
  • [26] Optimal control for an age-structured model for the transmission of hepatitis B
    Demasse, Ramses Djidjou
    Tewa, Jean-Jules
    Bowong, Samuel
    Emvudu, Yves
    JOURNAL OF MATHEMATICAL BIOLOGY, 2016, 73 (02) : 305 - 333
  • [27] SPATIOTEMPORAL DYNAMICS OF A FRACTIONAL MODEL FOR HEPATITIS B VIRUS INFECTION WITH CELLULAR IMMUNITY
    Bachraoui, Moussa
    Ait Ichou, Mohamed
    Hattaf, Khalid
    Yousfi, Noura
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2021, 16
  • [28] Hilfer-Katugampola fractional epidemic model for malware propagation with optimal control
    Ahmed, A. M. Sayed
    Ahmed, Hamdy M.
    Nofal, Taher A.
    Darwish, Adel
    Omar, Othman A. M.
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (10)
  • [29] Global dynamics and optimal control of a nonlinear fractional-order cholera model
    Khatua, Anupam
    Kar, Tapan Kumar
    Jana, Soovoojeet
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2024, 29 (02): : 265 - 285
  • [30] Dynamics analysis and optimal control of a fractional-order lung cancer model
    Wu, Xingxiao
    Huang, Lidong
    Zhang, Shan
    Qin, Wenjie
    AIMS MATHEMATICS, 2024, 9 (12): : 35759 - 35799