As a key substance for crop photosynthesis, chlorophyll content is closely related to crop growth and health. Inversion of chlorophyll content using unmanned aerial vehicle (UAV) visible light images can provide a theoretical basis for crop growth monitoring and health diagnosis. We used rice at the tasseling stage as the research object and obtained UAV visible orthophotos of two experimental fields planted manually (experimental area A) and mechanically (experimental area B), respectively. We constructed 14 vegetation indices and 15 texture features and utilized the correlation coefficient method to analyze them comprehensively. Then, four vegetation indices and four texture features were selected from them as feature variables to be added into three models, namely, K-neighborhood (KNN), decision tree (DT), and AdaBoost, respectively, for inverting chlorophyll content in experimental areas A and B. In the KNN model, the inversion model built with BGRI as the independent variable in region A has the highest accuracy, with R2 of 0.666 and RSME of 0.79; the inversion model built with RGRI as the independent variable in region B has the highest accuracy, with R2 of 0.729 and RSME of 0.626. In the DT model, the inversion model built with B-variance as the independent variable in region A has the highest accuracy, with R2 of 0.840 and RSME of 0.464; the inversion model built with G-mean as the independent variable in region B has the highest accuracy, with R2 of 0.845 and RSME of 0.530. In the AdaBoost model, the inversion model built with R-skewness as the independent variable in region A has the highest accuracy, with R2 of 0.826 and RSME of 0.642; the inversion model established with g as the independent variable in area B had the highest accuracy, with R2 of 0.879 and RSME of 0.599. In the comprehensive analysis, the best inversion models for experimental areas A and B were B-variance-decision tree and g-AdaBoost, respectively, whose models can quickly and accurately carry out the inversion of chlorophyll content of rice, and provide a theoretical basis for the monitoring of the crop's growth and health under different cultivation methods.