High-Quality Plasmonic Lasing with Topologically Trivial or Nontrivial Polarization

被引:0
|
作者
Song, Mengyuan [1 ,2 ]
Gao, Xinyu [1 ,2 ]
Bai, Chenghao [1 ,2 ]
Guan, Jun [3 ,4 ]
Ao, Xianyu [1 ,2 ]
机构
[1] Shandong Normal Univ, Shandong Prov Engn & Tech Ctr Light Manipulat, Sch Phys & Elect, Jinan 250358, Peoples R China
[2] Shandong Normal Univ, Sch Phys & Elect, Shandong Prov Key Lab Opt & Photon Devices, Jinan 250358, Peoples R China
[3] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Guangdong, Peoples R China
[4] Harbin Inst Technol, Guangdong Prov Key Lab Semicond Optoelect Mat & In, Shenzhen 518055, Peoples R China
来源
ACS PHOTONICS | 2025年
基金
中国国家自然科学基金;
关键词
bound state in the continuum; surface lattice resonance; temporal coherence; vector vortex beam; flatband; BOUND-STATE; VORTEX;
D O I
10.1021/acsphotonics.5c00421
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper reports how a simple plasmonic lattice, containing only one metal nanoparticle in the unit cell, can produce lasing beams with various polarization patterns. Using arrays of aluminum nanoparticles covered with dye solutions, we demonstrated topologically trivial and nontrivial lasing in the near-infrared regime under nanosecond-pulsed optical pumping. Although the aluminum nanoparticles exhibit high Ohmic losses, the lasing emissions showed narrow line widths below 0.05 nm and a long coherence time of hundreds of picoseconds. By comparing the polarization-resolved far-field emission patterns with the characteristics of simulated photonic modes, we identified the lasing cavity modes as bound states in the continuum or surface lattice resonances of electric and magnetic types. Our analysis shows that lasing action preferentially emerges from a flatter photonic band, regardless of whether the mode corresponds to a bright surface lattice resonance or a dark bound state in the continuum.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Intertwined string orders of topologically trivial and nontrivial phases in an interacting Kitaev chain with spatially varying potentials
    Huang, Weijie
    Yao, Yao
    PHYSICAL REVIEW B, 2022, 105 (24)
  • [12] Nontrivial relaxation dynamics of excitons in high-quality InGaAs/GaAs quantum wells
    Trifonov, A. V.
    Korotan, S. N.
    Kurdyubov, A. S.
    Gerlovin, I. Ya.
    Ignatiev, I. V.
    Efimov, Yu. P.
    Eliseev, S. A.
    Petrov, V. V.
    Dolgikh, Yu. K.
    Ovsyankin, V. V.
    Kavokin, A. V.
    PHYSICAL REVIEW B, 2015, 91 (11)
  • [13] High-quality Temperature Sensor Based on the Plasmonic Resonant Absorber
    Chen, Jian
    Zhang, Houjiao
    Liu, Guiqiang
    Liu, Jiasong
    Liu, Yi
    Tang, Li
    Liu, Zhengqi
    PLASMONICS, 2019, 14 (02) : 279 - 283
  • [14] High-quality Temperature Sensor Based on the Plasmonic Resonant Absorber
    Jian Chen
    Houjiao Zhang
    Guiqiang Liu
    Jiasong Liu
    Yi Liu
    Li Tang
    Zhengqi Liu
    Plasmonics, 2019, 14 : 279 - 283
  • [15] High-quality ZnO growth, doping, and polarization effect
    汤琨
    顾书林
    叶建东
    朱顺明
    张荣
    郑有炓
    Journal of Semiconductors, 2016, (03) : 5 - 17
  • [16] High-quality ZnO growth, doping, and polarization effect
    Tang Kun
    Gu Shulin
    Ye Jiandong
    Zhu Shunming
    Zhang Rong
    Zheng Youdou
    JOURNAL OF SEMICONDUCTORS, 2016, 37 (03)
  • [17] High-quality ZnO growth, doping, and polarization effect
    汤琨
    顾书林
    叶建东
    朱顺明
    张荣
    郑有炓
    Journal of Semiconductors, 2016, 37 (03) : 5 - 17
  • [18] Trivial vacua, high orders in perturbation theory, and nontrivial condensates
    Burkardt, M
    PHYSICAL REVIEW D, 1996, 53 (02) : 933 - 938
  • [19] Room temperature ultraviolet lasing action in high-quality ZnO thin films
    Zhang, X. Q.
    Suemune, Ikuo
    Kumano, H.
    Yao, Z. G.
    Huang, S. H.
    JOURNAL OF LUMINESCENCE, 2007, 122 : 828 - 830
  • [20] Overcoming High-Quality Limitations in Plasmonic Metasurfaces for Ultrasensitive Terahertz Applications
    Ren, Ziheng
    Hu, Yuze
    He, Weibao
    Wan, Shun
    Hu, Siyang
    Yu, Zhongyi
    Cheng, Xiang'ai
    Xu, Zhongjie
    Jiang, Tian
    ACS NANO, 2024, 18 (32) : 21211 - 21220