The evolution of the flux-size relationship in protoplanetary discs by viscous evolution and radial pebble drift

被引:0
|
作者
Appelgren, J. [1 ]
Johansen, A. [1 ,2 ]
Lambrechts, M. [2 ]
Jorgensen, J. [3 ,4 ]
van der Marel, N. [5 ]
Ohashi, N. [6 ]
Tobin, J. [7 ]
机构
[1] Lund Univ, Dept Phys, Div Astrophys, Lund Observ, Box 43, S-22100 Lund, Sweden
[2] Univ Copenhagen, GLOBE Inst, Ctr Star & Planet Format, Oster Voldgade 5-7, DK-1350 Copenhagen, Denmark
[3] Univ Copenhagen, Niels Bohr Inst, Ctr Star & Planet Format, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark
[4] Univ Copenhagen, Nat Hist Museum Denmark, Oster Voldgade 5-7, DK-1350 Copenhagen K, Denmark
[5] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[6] Acad Sinica, Inst Astron & Astrophys, 11F Astron Math Bldg,AS NTU 1,Sec 4,Roosevelt Rd, Taipei 10617, Taiwan
[7] Natl Radio Astron Observ, 520 Edgemont Rd, Charlottesville, VA 22903 USA
基金
新加坡国家研究基金会; 瑞典研究理事会;
关键词
methods: numerical; planets and satellites: formation; protoplanetary disks; EARLY PLANET FORMATION; DUST PROPERTIES; BINARY-SYSTEMS; TAURUS-AURIGA; STELLAR MASS; ALMA SURVEY; DISKS; ACCRETION; YOUNG; SUBSTRUCTURES;
D O I
10.1051/0004-6361/202450923
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we study the evolution of radiative fluxes, flux radii and observable dust masses in protoplanetary discs, in order to understand how these depend on the angular momentum budget and on the assumed heat sources. We use a model that includes the formation and viscous evolution of protoplanetary gas discs, together with the growth and radial drift of the dust component. We find that we are best able to match the observed fluxes and radii of class 0/I discs when we assume (i) an initial total angular momentum budget corresponding to a centrifugal radius of 40 au around solar-like stars, and (ii) inefficient viscous heating. Fluxes and radii of class II discs appear consistent with disc models with angular momentum budgets equivalent to centrifugal radii of both 40 or 10 au for solar-like stars, and with models where viscous heating occurs at either full efficiency or at reduced efficiency. During the first similar to 0.5 Myr of their evolution discs are generally optically thick at lambda = 1.3 mm. However, after this discs are optically thin at mm-wavelengths, supporting standard means of dust mass estimates. Using a disc population synthesis model, we then show that the evolution of the cumulative evolution of the observable dust masses agrees well with that observed in young star forming clusters of different ages.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] The evolution of protoplanetary discs in star formation and feedback simulations
    Qiao, Lin
    Haworth, Thomas J.
    Sellek, Andrew D.
    Ali, Ahmad A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 512 (03) : 3788 - 3805
  • [22] Evolution of protoplanetary discs with magnetically driven disc winds
    Suzuki, Takeru K.
    Ogihara, Masahiro
    Morbidelli, Alessandro
    Crida, Aurelien
    Guillot, Tristan
    ASTRONOMY & ASTROPHYSICS, 2016, 596
  • [23] On the vortex evolution in non-isothermal protoplanetary discs
    Tarczay-Nehez, D.
    Regaly, Zs
    Vorobyov, E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 493 (02) : 3014 - 3025
  • [24] CO2-rich protoplanetary discs as a probe of dust radial drift and trapping
    Sellek, Andrew D.
    Vlasblom, Marissa
    van Dishoeck, Ewine F.
    ASTRONOMY & ASTROPHYSICS, 2025, 694
  • [25] Time evolution of the water snowline in viscous discs
    Xiao, Lin
    Niu, Ruijuan
    Zhang, Hongxing
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 467 (03) : 2869 - 2878
  • [26] Accretion onto Protoplanetary Discs: Implications for Globular Cluster Evolution
    Wijnen, T. P. G.
    Pols, O. R.
    Pelupessy, F. I.
    Zwart, S. Portegies
    FORMATION, EVOLUTION, AND SURVIVAL OF MASSIVE STAR CLUSTERS, 2017, 12 (S316): : 334 - 335
  • [27] Evolution of a Viscous Protoplanetary Disk with Convectively Unstable Regions
    Ya. N. Pavlyuchenkov
    A. V. Tutukov
    L. A. Maksimova
    E. I. Vorobyov
    Astronomy Reports, 2020, 64 : 1 - 14
  • [28] The specific features of the evolution of the viscous protoplanetary circumsolar disk
    A. B. Makalkin
    Solar System Research, 2004, 38 (6) : 491 - 507
  • [29] The specific features of the evolution of the viscous protoplanetary circumsolar disk
    Makalkin, AB
    SOLAR SYSTEM RESEARCH, 2004, 38 (06) : 491 - 507
  • [30] The specific features of the evolution of the viscous protoplanetary circumsolar disk
    A. B. Makalkin
    Solar System Research, 2004, 38 : 491 - 507