First Principles Study on the Segregation of Metallic Solutes and Non-metallic Impurities in Cu Grain Boundary

被引:0
|
作者
Fotopoulos, Vasileios [1 ]
Strand, Jack [1 ,3 ]
Petersmann, Manuel [2 ]
Shluger, Alexander L. [1 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[2] KAI Kompetenzzentrum Automobil & Ind Elekt GmbH, Europastr 8, A-9524 Villach, Austria
[3] Nanolayers Res Comp Ltd, London, England
基金
英国工程与自然科学研究理事会;
关键词
DFT; Segregation; Grain boundaries; Metals; Non-metallic impurities; Metallic dopants; EMBRITTLEMENT; COPPER; ENERGY;
D O I
10.1007/978-3-031-50349-8_85
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metallic dopants have the potential to increase the mechanical strength of polycrystalline metals. These elements are expected to aggregate in regions of lower coordination, such as grain boundaries. At the grain boundaries, they can have a beneficial (toughening) or detrimental effect (e.g. grain boundary embrittlement). In this study, we employ Density Functional Theory (DFT) to compute the segregation energies of various metallic and non-metallic elements to determine their effect when introduced in a symmetric Cu grain boundary. The results may be used to qualitatively rank the beneficial effect of certain metallic elements, such as V, Zr, and Ag, as well as the strong weakening effect of non-metallic impurities like O, S, F, and P. Furthermore, the induced local distortion is found to be correlated with the weakening effect of the elements.
引用
收藏
页码:989 / 999
页数:11
相关论文
共 50 条
  • [21] Segregation of P and S Impurities to A Σ9 Grain Boundary in Cu
    Lousada, Claudio M.
    Korzhavyi, Pavel A.
    METALS, 2020, 10 (10) : 1 - 8
  • [22] First principles study of normal and fast diffusing metallic impurities in hcp titanium
    Bernstein, N.
    Shabaev, A.
    Lambrakos, S. G.
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 109 : 380 - 387
  • [23] First-principles determination of grain boundary strengthening in tungsten: Dependence on grain boundary structure and metallic radius of solute
    Wu, Xuebang
    You, Yu-Wei
    Kong, Xiang-Shan
    Chen, Jun-Ling
    Luo, G. -N.
    Lu, Guang-Hong
    Liu, C. S.
    Wang, Zhiguang
    ACTA MATERIALIA, 2016, 120 : 315 - 326
  • [24] Non-Metallic Minerals in the Twenty-first Century
    Kononov, O. V.
    MOSCOW UNIVERSITY GEOLOGY BULLETIN, 2009, 64 (01) : 63 - 64
  • [25] Systematic two-band model calculations of the GMR effect with metallic and non-metallic spacers and with impurities
    Gebele, O
    Böhm, M
    Krey, U
    Krompiewski, S
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2000, 214 (03) : 309 - 326
  • [26] First-principles study of non-metallic edge-modified zigzag arsenene nanoribbons for CO adsorption
    He, Jianlin
    Liu, Guili
    Zhang, Chunwei
    Zhang, Guoying
    CHINESE JOURNAL OF PHYSICS, 2023, 83 : 628 - 636
  • [27] Non-metallic minerals in the twenty-first century
    O. V. Kononov
    Moscow University Geology Bulletin, 2009, 64 (1) : 63 - 64
  • [28] Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study
    Wu, M.
    Cao, C.
    Jiang, J. Z.
    NANOTECHNOLOGY, 2010, 21 (50)
  • [29] EFFECT OF NON-METALLIC IMPURITIES ON SOLUBILITY OF COMPONENTS OF STEEL IN LIQUID LITHIUM
    PLEKHANOV, GA
    FEDORTSOVLUTIKOV, GP
    GLUSHKO, YV
    SOVIET ATOMIC ENERGY, 1978, 45 (02): : 818 - 820