Highly Efficient Self-Healing of Fractured Ti3AlC2 MAX Phase Nanowires

被引:0
|
作者
Cui, Junfeng [1 ,2 ]
Hu, Xiaofei [1 ]
Zhang, Lei [1 ]
Yang, Yingying [3 ]
Li, Youbing [4 ,5 ]
Chen, Guoxin [1 ]
Tang, Chun [6 ]
Ke, Peiling [1 ,2 ]
机构
[1] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Publ Technol Ctr, Ningbo 315201, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Adv Marine Mat, Ningbo 315201, Peoples R China
[3] Shandong Univ Technol, Sch Phys & Optoelect Engn, Zibo 255000, Peoples R China
[4] Soochow Univ, Sch Radiol & Interdisciplinary Sci RAD X, State Key Lab Radiat Med & Protect, Suzhou 215123, Jiangsu, Peoples R China
[5] Soochow Univ, Collaborat Innovat Ctr Radiat Med Jiangsu Higher E, Suzhou 215123, Jiangsu, Peoples R China
[6] Jiangsu Univ, Fac Civil Engn & Mech, Zhenjiang 212013, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
atomic migration; in situ; MAX phase; rebonding; self-healing; TI2ALC; CRACKS;
D O I
10.1002/adfm.202422697
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Despite extensive efforts devoted to developing self-healing materials in the past half-century, very limited successes are reported for ceramics or metals. Reported self-healing materials usually have low healing strength (megapascal) and long healing time (hours), and the healing of ceramics or metals normally requires external stimuli. Here, we report on intrinsic, highly efficient self-healing phenomena in Ti3AlC2 MAX phase nanowires at room temperature, which exhibit both ceramic and metallic properties. In situ transmission electron microscopy tensile testing reveals that the fracture strength of 2.1 GPa is achieved on the fractured Ti3AlC2 nanowire after self-healing for 5 min, corresponding to the self-healing efficiency of 36.2%, and the smaller the diameter, the higher the self-healing efficiency. The underlying mechanisms are uncovered by atomic-resolution characterizations combined with atomic simulations. The highly efficient self-healing of Ti3AlC2 is attributed to the cleavage behavior, atomic migrations, and rebonding on fracture surfaces. Al atoms trapped between partially filled Al layers on both fracture surfaces act as obstacles for the Ti-Al rebonding and are responsible for the size effect. These findings provide new insights into developing high-performance micro- or nano-devices, especially those that require high security and long service lifetime.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Study on the creep behavior and mechanisms of Ti3AlC2 MAX phase under ion irradiation
    Cheng, Zhaoyi
    Sun, Jianrong
    Zhang, Linqi
    Deng, Tianyu
    Yi, Wen
    Chen, Huaican
    Chang, Hailong
    Tai, Pengfei
    Tian, Yinan
    Li, Jian
    Zhang, Wei
    Gao, Pengcheng
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2025, 45 (05)
  • [32] Core structure and Peierls barrier of basal edge dislocations in Ti3AlC2 MAX phase
    Hossain, Rana
    Kimizuka, Hajime
    Shiihara, Yoshinori
    Ogata, Shigenobu
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 209
  • [33] Pressureless manufacturing of high purity Ti3AlC2 MAX phase material: Synthesis and characterisation
    Desai, Vyom
    Shrivastava, Aroh
    Zala, Arunsinh
    Parekh, Tejas
    Gupta, Surojit
    Jamnapara, N. I.
    VACUUM, 2023, 214
  • [34] An experimental approach to delineate the reaction mechanism of Ti3AlC2 MAX-Phase formation
    Yunus, Mohammad
    Maji, Bikas C.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (08) : 3131 - 3145
  • [35] The synthesis of high purity Ti3AlC2 MAX phase via molten salt method
    Feng, Lin
    Lv, Meiqian
    Qian, Qian
    Luo, Ruixiang
    Huang, Bo
    ADVANCED POWDER TECHNOLOGY, 2023, 34 (01)
  • [36] Fabrication of Mullite-Bonded Porous SiC Using Ti3AlC2 MAX Phase
    Septiadi, Arifin
    Yoon, Dang-Hyok
    JOURNAL OF THE KOREAN CERAMIC SOCIETY, 2019, 56 (02) : 191 - 196
  • [37] Effect of Ti3AlC2 MAX Phase on Structure and Properties of Resultant Ti3C2Tx MXene
    Shuck, Christopher E.
    Han, Meikang
    Maleski, Kathleen
    Hantanasirisakul, Kanit
    Kim, Seon Joon
    Choi, Junghoon
    Reil, William E. B.
    Gogotsi, Yury
    ACS APPLIED NANO MATERIALS, 2019, 2 (06) : 3368 - 3376
  • [38] Enhanced oxidation resistance in Ti 3 AlC 2 via selective self-healing
    Guo, Kai -Yu
    Meng, Guo-Hui
    Yang, Guan-Jun
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (14)
  • [39] Mechanochemical synthesis mechanism of Ti3AlC2 MAX phase from elemental powders of Ti, Al and C
    Shahin, N.
    Kazemi, Sh.
    Heidarpour, A.
    ADVANCED POWDER TECHNOLOGY, 2016, 27 (04) : 1775 - 1780
  • [40] Effects of TiC and Ti3AlC2 addition on combustion synthesis of Ti3AlC2 powders
    Guo, JM
    Chen, KX
    Ge, ZB
    Zhou, HP
    Ning, XS
    JOURNAL OF INORGANIC MATERIALS, 2003, 18 (01) : 251 - 256