Overview of the physics design of the EHL-2 spherical torus

被引:1
|
作者
Liang, Yunfeng [1 ,3 ]
Xie, Huasheng [1 ,2 ]
Shi, Yuejiang [1 ,2 ]
Gu, Xiang [1 ,2 ]
Jiang, Xinchen [1 ,2 ]
Dong, Lili [1 ,2 ]
Wang, Xueyun [1 ,2 ]
Yang, Danke [1 ,2 ]
Liu, Wenjun [1 ,2 ]
Sun, Tiantian [1 ,2 ]
Wang, Yumin [1 ,2 ]
Li, Zhi [1 ,2 ]
Cai, Jianqing [1 ,3 ]
Song, Xianming [1 ,2 ]
Tan, Muzhi [1 ,2 ,3 ]
Yang, Guang [1 ,2 ]
Zhao, Hanyue [1 ,2 ]
Dong, Jiaqi [1 ,2 ,4 ]
Peng, Yueng-Kay Martin [1 ,2 ]
Song, Shaodong [1 ,2 ]
Chen, Zhengyuan [1 ,2 ]
Li, Yingying [1 ,2 ]
Liu, Bing [1 ,2 ]
Luo, Di [1 ,2 ]
Yang, Yuanming [1 ,2 ]
Liu, Minsheng [1 ,2 ]
机构
[1] Hebei Key Lab Compact Fus, Langfang 065001, Peoples R China
[2] ENN Sci & Technol Dev Co Ltd, Langfang 065001, Peoples R China
[3] Forschungszentrum Julich GmbH, Inst Fus Energy & Nucl Waste Management Plasmaphy, Julich, Germany
[4] Southwestern Inst Phys, Chengdu 610225, Peoples R China
关键词
spherical torus; proton-boron fusion; thermal reaction rate; alpha particles; HIGH-BETA; TOKAMAK; FUSION; CONFINEMENT; REQUIREMENTS; ACHIEVEMENT; TRANSPORT; PLASMAS; MODEL;
D O I
10.1088/2058-6272/ad981a
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
ENN is planning the next generation experimental device EHL-2 with the goal to verify the thermal reaction rates of p-B-11 fusion, establish spherical torus/tokamak experimental scaling laws at 10's keV ion temperature, and provide a design basis for subsequent experiments to test and realize the p-B-11 fusion burning plasma. Based on 0-dimensional (0-D) system design and 1.5-dimensional transport modelling analyses, the main target parameters of EHL-2 have been basically determined, including the plasma major radius, R-0, of 1.05 m, the aspect ratio, A, of 1.85, the maximum central toroidal magnetic field strength, B-0, of 3 T, and the plasma toroidal current, I-p, of 3 MA. The main heating system will be the neutral beam injection at a total power of 17 MW. In addition, 6 MW of electron cyclotron resonance heating will serve as the main means of local current drive and MHD instabilities control. The physics design of EHL-2 is focused on addressing three main operating scenarios, i.e., (1) high ion temperature scenario, (2) high-performance steady-state scenario and (3) high triple product scenario. Each scenario will integrate solutions to different important issues, including equilibrium configuration, heating and current drive, confinement and transport, MHD instability, p-B-11 fusion reaction, plasma-wall interactions, etc. Beyond that, there are several unique and significant challenges to address, including establish a plasma with extremely high core ion temperature (T-i,T-0 > 30 keV), and ensure a large ion-to-electron temperature ratio (T-i,T-0/T-e,T-0 > 2), and a boron concentration of 10%-15% at the plasma core; realize the start-up by non-inductive current drive and the rise of MA-level plasma toroidal current. This is because the volt-seconds that the central solenoid of the ST can provide are very limited; achieve divertor heat and particle fluxes control including complete detachment under high P/R (> 20 MW/m) at relatively low electron densities. This overview will introduce the advanced progress in the physics design of EHL-2.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Modeling of ion cyclotron resonance frequency heating of proton-boron plasmas in EHL-2 spherical tokamak
    Wu, Xianshu
    Li, Jingchun
    Dong, Jiaqi
    Shi, Yuejiang
    Liu, Guoqing
    Liu, Yong
    Long, Zhiqiang
    Zhang, Buqing
    Yuan, Baoshan
    Peng, Y. K. Martin
    Liu, Minsheng
    PLASMA SCIENCE & TECHNOLOGY, 2024, 26 (10)
  • [32] Physics and systems design analyses for spherical torus (ST) based VNS
    Peng, YKM
    Cheng, ET
    Galambos, JD
    Strickler, DJ
    Berk, SE
    17TH IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, VOLS 1 AND 2, 1998, : 733 - 736
  • [33] Physics design requirements for the National Spherical Torus Experiment liquid lithium divertor
    Kugel, H. W.
    Bell, M.
    Berzak, L.
    Brooks, A.
    Ellis, R.
    Gerhardt, S.
    Harjes, H.
    Kaita, R.
    Kallman, J.
    Maingi, R.
    Majeski, R.
    Mansfield, D.
    Menard, J.
    Nygren, R. E.
    Soukhanovskii, V.
    Stotler, D.
    Wakeland, P.
    Zakharov, L. E.
    FUSION ENGINEERING AND DESIGN, 2009, 84 (7-11) : 1125 - 1129
  • [34] Exploration of spherical torus physics in the NSTX device
    Ono, M
    Kaye, SM
    Peng, YKM
    Barnes, G
    Blanchard, W
    Carter, MD
    Chrzanowski, J
    Dudek, L
    Ewig, R
    Gates, D
    Hatcher, RE
    Jarboe, T
    Jardin, SC
    Johnson, D
    Kaita, R
    Kalish, M
    Kessel, CE
    Kugel, HW
    Maingi, R
    Majeski, R
    Manickam, J
    McCormack, B
    Menard, J
    Mueller, D
    Nelson, BA
    Nelson, BE
    Neumeyer, C
    Oliaro, G
    Paoletti, F
    Parsells, R
    Perry, E
    Pomphrey, N
    Ramakrishnan, S
    Raman, R
    Rewoldt, G
    Robinson, J
    Roquemore, AL
    Ryan, P
    Sabbagh, S
    Swain, D
    Synakowski, EJ
    Viola, M
    Williams, M
    Wilson, JR
    NUCLEAR FUSION, 2000, 40 (3Y) : 557 - 561
  • [35] Physics basis for a spherical torus power plant
    Jardin, SC
    Kessel, CE
    Menard, J
    Mau, TK
    Miller, R
    Najmabadi, F
    Chan, VS
    Lao, LL
    Lao, LL
    Linliu, YR
    Miller, RL
    Petrie, T
    Politzer, PA
    Turnbull, AD
    FUSION ENGINEERING AND DESIGN, 2003, 65 (02) : 165 - 197
  • [36] Spherical torus center stack design
    Neumeyer, C
    Heitzenroeder, P
    Kessel, C
    Ono, M
    Peng, M
    Schmidt, J
    Woolley, R
    Zatz, I
    19TH IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, PROCEEDINGS, 2002, : 413 - 417
  • [37] Engineering overview of the national spherical torus experiment (NSTX)
    Neumeyer, C
    Heitzenroeder, P
    Chrzanowski, J
    Nelson, B
    Spitzer, J
    Wilson, R
    Dudek, L
    Kaita, R
    Ramakrishnan, S
    Bashore, D
    Perry, E
    17TH IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, VOLS 1 AND 2, 1998, : 221 - 226
  • [38] Physics Design of a 28 GHz Electron Heating System for the National Spherical Torus Experiment Upgrade
    Taylor, G.
    Bertelli, N.
    Ellis, R. A.
    Gerhardt, S. P.
    Harvey, R. W.
    Hosea, J. C.
    Poli, F.
    Raman, R.
    Smirnov, A. P.
    RADIOFREQUENCY POWER IN PLASMAS, 2014, 1580 : 534 - 537
  • [39] Initial physics results from the National Spherical Torus Experiment
    Kaye, SM
    Bell, MG
    Bell, RE
    Bialek, J
    Bigelow, T
    Bitter, M
    Bonoli, P
    Darrow, D
    Efthimion, P
    Ferron, J
    Fredrickson, E
    Gates, D
    Grisham, L
    Hosea, J
    Johnson, D
    Kaita, R
    Kubota, S
    Kugel, H
    LeBlanc, B
    Maingi, R
    Manickam, J
    Mau, TK
    Maqueda, RJ
    Mazzucato, E
    Menard, J
    Mueller, D
    Nelson, B
    Nishino, N
    Ono, M
    Paoletti, F
    Paul, S
    Peng, YKM
    Phillips, CK
    Raman, R
    Ryan, P
    Sabbagh, SA
    Schaffer, M
    Skinner, CH
    Stutman, D
    Swain, D
    Synakowski, E
    Takase, Y
    Wilgen, J
    Wilson, JR
    Zhu, W
    Zweben, S
    Bers, A
    Carter, M
    Deng, B
    Domier, C
    PHYSICS OF PLASMAS, 2001, 8 (05) : 1977 - 1987
  • [40] National Spherical Torus Experiment (NSTX) torus design, fabrication and assembly
    Chrzanowski, JH
    Neumeyer, C
    Heitzenroeder, P
    Barnes, G
    Viola, M
    18TH IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, 1999, : 59 - 62