On the Ramsey Number for Theta Graphs Versus the Complete Graph of Order Six

被引:0
|
作者
Baniabedalruhman, A. [1 ]
Jaradat, M. M. M. [2 ]
Bataineh, M. S. [1 ,3 ]
Jaradat, A. M. M. [4 ]
机构
[1] Yarmouk Univ, Dept Math, Irbid, Jordan
[2] Qatar Univ, Dept Math Stat & Phys, Doha, Qatar
[3] Univ Sharjah, Dept Math, Sharjah, U Arab Emirates
[4] Princess Sumaya Univ Technol, Basic Sci Dept, Amman, Jordan
关键词
CYCLE; R(THETA(N); R(C-M; K-7);
D O I
10.1155/2024/2416730
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Ramsey number rG,H is the smallest positive integer n such that any graph W of order n contains G as a subgraph or its complement contains H as a subgraph. In this paper, we find the exact value for the Ramsey number r theta n,K6;k >= 6; n >= 6, where theta n is a theta graph of order n and K6 is the complete graph of order 6.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] The theta-complete graph Ramsey number r(θk, K5); k = 7, 8, 9
    Jaradat, A. M. M.
    Baniabedalruhman, A.
    Bataineh, M. S.
    Jaradat, M. M. M.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (46): : 614 - 620
  • [42] The Ramsey Number for Tree Versus Wheel with Odd Order
    Yusuf Hafidh
    Edy Tri Baskoro
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 2151 - 2160
  • [43] The Ramsey Number for Tree Versus Wheel with Odd Order
    Hafidh, Yusuf
    Baskoro, Edy Tri
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) : 2151 - 2160
  • [44] The Ramsey Number of Wheels versus a Fan of Order Five
    Meng, Yanjun
    Zhang, Yanbo
    Zhang, Yunqing
    ARS COMBINATORIA, 2018, 137 : 365 - 372
  • [45] Computing the anti-Ramsey number for trees in complete tripartite graph
    Jin, Zemin
    Wang, Yite
    Ma, Huawei
    Wang, Huaping
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 456
  • [46] A note on a triangle-free - complete graph induced Ramsey number
    Gorgol, I
    DISCRETE MATHEMATICS, 2001, 235 (1-3) : 159 - 163
  • [47] On the Ramsey multiplicity of complete graphs
    Conlon, David
    COMBINATORICA, 2012, 32 (02) : 171 - 186
  • [48] On the Ramsey multiplicity of complete graphs
    David Conlon
    Combinatorica, 2012, 32 : 171 - 186
  • [49] The Ramsey number of dense graphs
    Conlon, David
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 483 - 496
  • [50] Polynomial resultants and Ramsey numbers of a theta graph
    Liu, Meng
    Wang, Ye
    ADVANCES IN APPLIED MATHEMATICS, 2025, 167