Numerical and experimental analyses of the fatigue threshold of composite bonded joints under pure mode I loading

被引:0
|
作者
de Moura, M. F. S. F. [1 ]
Silva, F. G. A. [2 ,3 ,4 ]
Moreira, R. D. F. [1 ,2 ]
机构
[1] Univ Porto, Dept Engn Mecan, Fac Engn, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[2] Inst Politecn Porto, Inst Super Engn Porto, Dept Engn Mecan, Rua Dr Antonio Bernardino Almeida 431, P-4200072 Porto, Portugal
[3] ISPGAYA, P-4400103 Vila Nova De Gaia, Portugal
[4] Inst Politecn Viana Castelo, proMetheus, Rua Escola Ind & Comercial Nun Alvares, P-4900347 Viana Do Castelo, Portugal
关键词
High-cycle fatigue; Fatigue threshold; Mode I loading; DCB tests; Cohesive zone model; HIGH-CYCLE FATIGUE; CRACK-GROWTH; FRACTURE;
D O I
10.1016/j.engfracmech.2025.110912
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The determination of fatigue threshold in carbon-epoxy bonded joints under mode I loading was addressed in this work. The Double Cantilever Beam setup was used to carry out five experimental fatigue tests under displacement control. An equivalent crack length-based procedure was employed to obtain the development of strain energy release rate (SERR) with the number of cycles. The modified Paris law parameters and the corresponding SERR fatigue threshold were obtained for this set of specimens. A high-cycle fatigue cohesive zone model relying on the modified Paris law and accounting for SERR fatigue threshold was developed. The model was initially validated by a numerical benchmark case and then applied in the context of the current analysis. The robustness of the numerical model to address the fatigue threshold under mode I loading was confirmed by comparing the results against experimental ones.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A numerical and experimental study of fasteners as a delamination arrest mechanism in composite laminates under mode I loading
    van de Kerk, J. J.
    de Melo, Rodolfo F. V.
    Bastiani, Giovanni
    Donadon, Mauricio Vicente
    Arbelo, Mariano A.
    THIN-WALLED STRUCTURES, 2023, 191
  • [42] Mode-I, mode-II and mixed-mode I plus II fracture behavior of composite bonded joints: Experimental characterization and numerical simulation
    Floros, I. S.
    Tserpes, K. I.
    Loebel, T.
    COMPOSITES PART B-ENGINEERING, 2015, 78 : 459 - 468
  • [43] Simulation of fatigue delamination growth in composite laminates under mode I loading
    Skvortsov, Yu V.
    Chernyakin, S. A.
    Glushkov, S. V.
    Perov, S. N.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (15-16) : 7216 - 7224
  • [44] Mode I delamination growth of multidirectional composite laminates under fatigue loading
    Peng, Lei
    Zhang, Jianyu
    Zhao, Libin
    Bao, Rui
    Yang, Hongqin
    Fei, Binjun
    JOURNAL OF COMPOSITE MATERIALS, 2011, 45 (10) : 1077 - 1090
  • [45] Experimental and numerical investigation of the influence of rivetless nut plate joints on fatigue crack growth in adhesively bonded composite joints
    Sachse, R.
    Pickett, A. K.
    Essig, W.
    Middendorf, P.
    INTERNATIONAL JOURNAL OF FATIGUE, 2017, 105 : 262 - 275
  • [46] Experimental and Numerical Study of Notch Geometry Effects on Fatigue Life Under Mixed Mode I and III Loading
    S. Ilyaei
    Y. Abubasir
    Transactions of the Indian Institute of Metals, 2018, 71 : 1781 - 1789
  • [47] Experimental and Numerical Study of Notch Geometry Effects on Fatigue Life Under Mixed Mode I and III Loading
    Ilyaei, S.
    Abubasir, Y.
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2018, 71 (07) : 1781 - 1789
  • [48] Mode I fracture of epoxy bonded composite joints: 1. Quasi-static loading
    Ashcroft, IA
    Hughes, DJ
    Shaw, SJ
    INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2001, 21 (02) : 87 - 99
  • [49] Fatigue Analysis of Structural Bonded Joints Under Variable Amplitude Loading
    Schmidt, Halvar
    Bruder, Thomas
    Hanselka, Holger
    MATERIALS TESTING, 2012, 54 (7-8) : 503 - 509
  • [50] Damage mechanisms in composite/composite bonded joints under static tensile loading
    URA 863 CNRS, Futuroscope, France
    Appl Compos Mater, 2 (95-119):