High Mobility, High Carrier Density SnSe2 Field-Effect Transistors with Ultralow Subthreshold Swing and Gate-Controlled Photoconductance Switching

被引:0
|
作者
Huang, Yuan [1 ,2 ]
Sutter, Eli [3 ]
Parkinson, Bruce A. [4 ,5 ]
Sutter, Peter [6 ]
机构
[1] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[2] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[3] Univ Nebraska Lincoln, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
[4] Univ Wyoming, Sch Energy Resources, Laramie, WY 82071 USA
[5] Univ Wyoming, Dept Chem, Laramie, WY 82071 USA
[6] Univ Nebraska Lincoln, Dept Elect & Comp Engn, Lincoln, NE 68588 USA
基金
中国国家自然科学基金;
关键词
high carrier mobility; layered semiconductors; negative photoconductance; on-off current ratio; solution gating; subthreshold swing; tin diselenide; BLACK PHOSPHORUS; TRANSITION; NANOWIRES; GROWTH; SULFUR;
D O I
10.1002/aelm.202400691
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
2D and layered semiconductors are considered as promising electronic materials, particularly for applications that require high carrier mobility and efficient field-effect switching combined with mechanical flexibility. To date, however, the highest mobility has been realized primarily at low carrier concentration. Here, it is shown that few-layer/multilayer SnSe2 gated by a solution top gate combines very high room-temperature electron mobility (up to 800 cm(2) V(-1)s(-1)), along with large on-off current ratios (>10(5)) and a subthreshold swing below the thermodynamic limit (50 mV per decade) in field-effect devices, at exceptionally large sheet carrier concentrations of approximate to 10(13) cm(-2). Observed mobility enhancements upon partial depletion of the channel point to near-surface defects or impurities as the mobility-limiting scattering centers. Under illumination, the resulting gap states give rise to gate-controlled switching between positive and negative photoconductance. The results qualify SnSe2 as a promising layered semiconductor for flexible and wearable electronics, as well as for the realization of advanced approaches to photodetection.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Subthreshold Current Suppression in ReS2 Nanosheet-Based Field-Effect Transistors at High Temperatures
    Durante, Ofelia
    Intonti, Kimberly
    Viscardi, Loredana
    De Stefano, Sebastiano
    Faella, Enver
    Kumar, Arun
    Pelella, Aniello
    Romeo, Francesco
    Giubileo, Filippo
    Alghamdi, Manal Safar G.
    Alshehri, Mohammed Ali S.
    Craciun, Monica F.
    Russo, Saverio
    Di Bartolomeo, Antonio
    ACS APPLIED NANO MATERIALS, 2023, 6 (23) : 21663 - 21670
  • [32] Solution-Processed High Mobility Top-Gate N-Channel Polymer Field-Effect Transistors
    Xiang Lan-Yi
    Ying Jun
    Han Jin-Hua
    Wang Wei
    Xie Wen-Fa
    CHINESE PHYSICS LETTERS, 2015, 32 (09)
  • [33] Insulating gate III-N heterostructure field-effect transistors for high-power microwave and switching applications
    Khan, MA
    Simin, G
    Yang, JW
    Zhang, JP
    Koudymov, A
    Shur, MS
    Gaska, R
    Hu, XH
    Tarakji, A
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2003, 51 (02) : 624 - 633
  • [34] Solution-Processed High Mobility Top-Gate N-Channel Polymer Field-Effect Transistors
    项兰义
    应俊
    韩金花
    王伟
    谢文法
    Chinese Physics Letters, 2015, (09) : 171 - 174
  • [35] Fabrication of high-mobility organic single-crystal field-effect transistors with amorphous fluoropolymer gate insulators
    Uno, Mayumi
    Tominari, Y.
    Takeya, J.
    ORGANIC ELECTRONICS, 2008, 9 (05) : 753 - 756
  • [36] Solution-Processed High Mobility Top-Gate N-Channel Polymer Field-Effect Transistors
    项兰义
    应俊
    韩金花
    王伟
    谢文法
    Chinese Physics Letters, 2015, 32 (09) : 171 - 174
  • [37] Temperature- and density-dependent channel potentials in high-mobility organic field-effect transistors
    Kemerink, M.
    Hallam, T.
    Lee, M. J.
    Zhao, N.
    Caironi, M.
    Sirringhaus, H.
    PHYSICAL REVIEW B, 2009, 80 (11):
  • [38] High field-effect mobility amorphous InSnZnO thin-film transistors with low carrier concentration and oxygen vacancy
    Jang, K.
    Raja, J.
    Kim, J.
    Lee, Y.
    Kim, D.
    Yi, J.
    ELECTRONICS LETTERS, 2013, 49 (16) : 1030 - 1031
  • [39] Isoindigo-based polymer field-effect transistors: effects of selenophene-substitution on high charge carrier mobility
    Park, Kwang Hun
    Cheon, Kwang Hee
    Lee, Yun-Ji
    Chung, Dae Sung
    Kwon, Soon-Ki
    Kim, Yun-Hi
    CHEMICAL COMMUNICATIONS, 2015, 51 (38) : 8120 - 8122
  • [40] High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids
    Ono, S.
    Seki, S.
    Hirahara, R.
    Tominari, Y.
    Takeya, J.
    APPLIED PHYSICS LETTERS, 2008, 92 (10)