Growth of polynomials on arcs in the complex plane

被引:0
|
作者
Wei, Annie R.
机构
关键词
Remez inequality; Linear programming;
D O I
10.1016/j.aim.2024.109940
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the growth rate of polynomials on an arc in the complex plane is exponential in its degree and can be computed by a linear program. (c) 2024 The Author. Published by Elsevier Inc.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] RESTRICTION OF ZEROS OF POLYNOMIALS TO SECTORS OF COMPLEX PLANE
    GOODMAN, R
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (07): : 905 - &
  • [22] On Extrapolation of Polynomials with Real Coefficients to the Complex Plane
    A. S. Kochurov
    V. M. Tikhomirov
    Mathematical Notes, 2019, 106 : 572 - 576
  • [23] On Extrapolation of Polynomials with Real Coefficients to the Complex Plane
    Kochurov, A. S.
    Tikhomirov, V. M.
    MATHEMATICAL NOTES, 2019, 106 (3-4) : 572 - 576
  • [24] UNIFORM APPROXIMATIONS ON A COMPLEX PLANE BY POLYNOMIALS WITH GAPS
    ARAKELIAN, NU
    MARTIROSIAN, VA
    DOKLADY AKADEMII NAUK SSSR, 1977, 235 (02): : 249 - 252
  • [25] Extremal polynomials on arcs of the circle with zeros on these arcs
    Lukashov, A. L.
    Tyshkevich, S. V.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2009, 44 (03): : 172 - 179
  • [26] On distribution of zeros of random polynomials in complex plane
    Ibragimov, Ildar
    Zaporozhets, Dmitry
    Springer Proceedings in Mathematics and Statistics, 2013, 33 : 303 - 323
  • [27] Zeros and approximations of Holant polynomials on the complex plane
    Katrin Casel
    Philipp Fischbeck
    Tobias Friedrich
    Andreas Göbel
    J. A. Gregor Lagodzinski
    computational complexity, 2022, 31
  • [28] Arcs in the plane
    Hart, Joan E.
    Kunen, Kenneth
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (18) : 2503 - 2511
  • [29] THE SHAPE OF COMPLEX IMPEDANCE PLANE ARCS FOR IONICALLY CONDUCTING GLASSES
    ISARD, JO
    SOLID STATE IONICS, 1988, 31 (03) : 187 - 196
  • [30] Symmetric orthogonal L-polynomials in the complex plane
    Bracciali, CF
    Capela, JMV
    Ranga, AS
    ORTHOGONAL FUNCTIONS, MOMENT THEORY, AND CONTINUED FRACTIONS: THEORY AND APPLICATIONS, 1998, 199 : 57 - 67