A Monolithically Integrated InP HBT-based THz Detector

被引:0
|
作者
Raemer, Adam [1 ]
Negri, Edoardo [1 ,2 ]
Yacoub, Hady [1 ]
Theumer, Jonas [1 ,3 ]
Wartena, Joost [1 ]
Krozer, Viktor [1 ,4 ]
Heinrich, Wolfgang [1 ]
机构
[1] Ferdinand Braun Inst FBH, Berlin, Germany
[2] Sapienza Univ Rome, Rome, Italy
[3] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[4] Goethe Univ Frankfurt Am Main, Phys Inst, Frankfurt, Germany
关键词
THz detector; on-chip antenna; InP HBT;
D O I
10.23919/EuMC61614.2024.10732183
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
THz power detection beyond 100 GHz still faces challenges in sensitivity, speed, and the capability of detector arrays. This paper introduces the first measurement outcomes of InP heterojunction bipolar transistor (HBT) THz detectors featuring monolithically integrated antenna structures. These detectors exhibit high sensitivity, rapid response times, and scalability for large arrays, leveraging self-mixing effects. Achieving high sensitivity necessitates tailored adaptation of InP HBT devices to broadband on-chip antennas. Sensitivities surpassing 100mA/W are attained between 100 GHz and 500 GHz, with values exceeding 300mA/W for frequencies below 200 GHz. Notably, lens and substrate losses are not factored into this sensitivity. Expectations are high for sensitivity values to surpass those achieved with FETs in the same frequency range, further establishing the superiority of this approach in THz power detection.
引用
收藏
页码:1000 / 1003
页数:4
相关论文
共 50 条
  • [41] MONOLITHICALLY INTEGRATED INP-BASED FRONT-END PHOTORECEIVERS
    ZEBDA, Y
    LAI, R
    BHATTACHARYA, P
    PAVLIDIS, D
    BERGER, PR
    BROCK, TL
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1991, 38 (06) : 1324 - 1333
  • [42] Monolithically integrated InP-based modelocked ring laser systems
    Bente, Erwin
    Moskalenko, Valentina
    Latkowski, Sylwester
    Tahvili, Saeed
    Augustin, Luc
    Smit, Meint
    SEMICONDUCTOR LASERS AND LASER DYNAMICS VI, 2014, 9134
  • [43] A Monolithically Integrated InP-based Few-mode Laser
    Li, Zhaosong
    Lu, Dan
    Liang, Song
    Liu, Zhen
    Pan, Jiaoqing
    2016 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2016,
  • [44] An InP-based vortex beam emitter with monolithically integrated laser
    Zhang, Juan
    Sun, Changzheng
    Xiong, Bing
    Wang, Jian
    Hao, Zhibiao
    Wang, Lai
    Han, Yanjun
    Li, Hongtao
    Luo, Yi
    Xiao, Yi
    Yu, Chuanqing
    Tanemura, Takuo
    Nakano, Yoshiaki
    Li, Shimao
    Cai, Xinlun
    Yu, Siyuan
    NATURE COMMUNICATIONS, 2018, 9
  • [45] Stability Analysis of an SiGe HBT-Based Active Cold Load
    de la Jarrige, Emilie Leynia
    Escotte, Laurent
    Gonneau, Eric
    Goutoule, Jean-Marc
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2011, 59 (02) : 354 - 359
  • [46] A 300-GHz Integrated Transmitter based on InP HBT Technology
    Son, Heekang
    Kim, Doyoon
    Song, Kiryong
    Cho, Jai-Heon
    Rieh, Jae-Sung
    2018 ASIA-PACIFIC MICROWAVE CONFERENCE PROCEEDINGS (APMC), 2018, : 524 - 526
  • [47] Design of an Integrated High-speed HBT-based Electroabsorption Modulator and Driver in SiGe BiCMOS Technology
    Fu, Enjin
    Koomson, Valencia Joyner
    Wu, Pengfei
    Deng, Shengling
    Huang, Z. Rena
    2012 IEEE 55TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2012, : 37 - 40
  • [48] High-performance transimpedance formulation for MESFET- and HBT-based monolithic microwave integrated circuits
    Wilson, B
    Drew, JD
    IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 1998, 145 (06): : 429 - 436
  • [49] Highly integrated InP HBT optical receivers
    Yung, M
    Jensen, J
    Walden, R
    Rodwell, M
    Raghavan, G
    Elliott, K
    Stanchina, W
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 1999, 34 (02) : 219 - 227
  • [50] MONOLITHICALLY INTEGRATED GAAS-BASED AND INP-BASED FRONT END PHOTORECEIVERS
    LI, WQ
    ZEBDA, Y
    BHATTACHARYA, PK
    PAVLIDIS, D
    OH, JE
    PAMULAPATI, J
    PROCEEDINGS : IEEE/CORNELL CONFERENCE ON ADVANCED CONCEPTS IN HIGH SPEED SEMICONDUCTOR DEVICES AND CIRCUITS, 1989, : 353 - 361