Machine Learning-Based Methods for Materials Inverse Design: A Review

被引:0
|
作者
Liu, Yingli [1 ,2 ]
Cui, Yuting [1 ,2 ]
Zhou, Haihe [1 ,2 ]
Lei, Sheng [3 ]
Yuan, Haibin [3 ]
Shen, Tao [1 ,2 ]
Yin, Jiancheng [4 ]
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650093, Peoples R China
[2] Kunming Univ Sci & Technol, Yunnan Key Lab Comp Technol Applicat, Kunming 650500, Peoples R China
[3] Yunnan Tin Co Ltd, Tin Ind Branch, Gejiu 661000, Peoples R China
[4] Kunming Univ Sci & Technol, Fac Mat Sci & Engn, Kunming 650093, Peoples R China
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2025年 / 82卷 / 02期
基金
中国国家自然科学基金;
关键词
Materials inverse design; machine learning; target properties; deep learning; new materials discovery; DEEP NEURAL-NETWORKS; MATERIALS DISCOVERY; MAGNESIUM ALLOYS; PERFORMANCE; DRIVEN; PREDICTION; ALGORITHM; STRENGTH; PHASE;
D O I
10.32604/cmc.2025.060109
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Finding materials with specific properties is a hot topic in materials science. Traditional materials design relies on empirical and trial-and-error methods, requiring extensive experiments and time, resulting in high costs. With the development of physics, statistics, computer science, and other fields, machine learning offers opportunities for systematically discovering new materials. Especially through machine learning-based inverse design, machine learning algorithms analyze the mapping relationships between materials and their properties to find materials with desired properties. This paper first outlines the basic concepts of materials inverse design and the challenges faced by machine learning-based approaches to materials inverse design. Then, three main inverse design methods-exploration-based, model-based, and optimization-based-are analyzed in the context of different application scenarios. Finally, the applications of inverse design methods in alloys, optical materials, and acoustic materials are elaborated on, and the prospects for materials inverse design are discussed. The authors hope to accelerate the discovery of new materials and provide new possibilities for advancing materials science and innovative design methods.
引用
收藏
页码:1463 / 1492
页数:30
相关论文
共 50 条
  • [21] Machine learning-based inverse design of auxetic metamaterial with zero Poisson's ratio
    Chang, Yafeng
    Wang, Hui
    Dong, Qinxi
    MATERIALS TODAY COMMUNICATIONS, 2022, 30
  • [22] Machine Learning-Based Intrusion Detection Methods in IoT Systems: A Comprehensive Review
    Kikissagbe, Brunel Rolack
    Adda, Meddi
    ELECTRONICS, 2024, 13 (18)
  • [23] A Review of Feature Selection Methods for Machine Learning-Based Disease Risk Prediction
    Pudjihartono, Nicholas
    Fadason, Tayaza
    Kempa-Liehr, Andreas W.
    O'Sullivan, Justin M.
    FRONTIERS IN BIOINFORMATICS, 2022, 2
  • [24] A review on application of machine learning-based methods for power system inertia monitoring
    Heidari, Mahdi
    Ding, Lei
    Kheshti, Mostafa
    Bao, Weiyu
    Zhao, Xiaowei
    Popov, Marjan
    Terzija, Vladimir
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 162
  • [25] A review of machine learning-based methods for predicting drug-target interactions
    Shi, Wen
    Yang, Hong
    Xie, Linhai
    Yin, Xiao-Xia
    Zhang, Yanchun
    HEALTH INFORMATION SCIENCE AND SYSTEMS, 2024, 12 (01)
  • [26] A snapshot review on soft materials assembly design utilizing machine learning methods
    Martirossyan, Maya M.
    Du, Hongjin
    Dshemuchadse, Julia
    Du, Chrisy Xiyu
    MRS ADVANCES, 2024, 9 (13) : 1088 - 1101
  • [27] Machine Learning-Based Design Concept Evaluation
    Camburn, Bradley
    He, Yuejun
    Raviselvam, Sujithra
    Luo, Jianxi
    Wood, Kristin
    JOURNAL OF MECHANICAL DESIGN, 2020, 142 (03)
  • [28] Design of Machine Learning-Based Smoke Surveillance
    Ho, Chao-Ching
    ADVANCED SCIENCE LETTERS, 2011, 4 (6-7) : 2272 - 2275
  • [29] Machine learning-based Raman amplifier design
    Zibar, D.
    Ferrari, A.
    Curri, V.
    Carena, A.
    2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2019,
  • [30] Deep learning-based inverse method for layout design
    Zhang, Yujie
    Ye, Wenjing
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (02) : 527 - 536