FUNCTORIALITY IN CATEGORICAL SYMPLECTIC GEOMETRY

被引:0
|
作者
Abouzaid, Mohammed [1 ]
Bottman, Nathaniel [2 ]
机构
[1] Columbia Univ, Dept Math, 2990 Broadway, New York, NY 10027 USA
[2] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
关键词
FLOER COHOMOLOGY;
D O I
10.1090/bull/1808
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Categorical symplectic geometry is the study of a rich collection of invariants of symplectic manifolds, including the Fukaya A(infinity)-category, Floer cohomology, and symplectic cohomology. Beginning with work of Wehrheim and Woodward in the late 2000s, several authors have developed techniques for functorial manipulation of these invariants. We survey these functorial structures, including Wehrheim and Woodward's quilted Floer cohomology and functors associated to Lagrangian correspondences, Fukaya's alternate approach to defining functors between Fukaya A(infinity)-categories, and the second author's ongoing construction of the symplectic (A(infinity), 2)-category. In the last section, we describe a number of direct and indirect applications of this circle of ideas, and propose a conjectural version of the Barr-Beck monadicity criterion in the context of the Fukaya A(infinity)-category.
引用
收藏
页码:525 / 608
页数:84
相关论文
共 50 条
  • [21] Symplectic Geometry of the Koopman Operator
    Kozlov, V. V.
    DOKLADY MATHEMATICS, 2021, 104 (01) : 175 - 179
  • [22] Spectral geometry of symplectic spinors
    Vassilevich, Dmitri
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (10)
  • [23] FOLIATIONS IN SYMPLECTIC-GEOMETRY
    DAZORD, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1982, 294 (14): : 489 - 491
  • [24] Symplectic geometry of semisimple orbits
    Azad, Hassan
    van den Ban, Erik
    Biswas, Indranil
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 507 - 533
  • [25] Special geometry and symplectic transformations
    deWit, B
    VanProeyen, A
    NUCLEAR PHYSICS B, 1996, : 196 - 206
  • [26] An extension theorem in symplectic geometry
    Schlenk, F
    MANUSCRIPTA MATHEMATICA, 2002, 109 (03) : 329 - 348
  • [27] Symplectic geometry of constrained optimization
    Andrey A. Agrachev
    Ivan Yu. Beschastnyi
    Regular and Chaotic Dynamics, 2017, 22 : 750 - 770
  • [28] Symplectic geometry on quantum plane
    Albeverio, S
    Fei, SM
    MODERN PHYSICS LETTERS A, 1999, 14 (8-9) : 549 - 557
  • [29] Problems of Lifts in Symplectic Geometry
    Arif SALIMOV
    Manouchehr BEHBOUDI ASL
    Sevil KAZIMOVA
    Chinese Annals of Mathematics,Series B, 2019, (03) : 321 - 330
  • [30] Super symplectic geometry and prequantization
    Tuynman, G. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (12) : 1919 - 1939