Improved Graph Convolutional Neural Networks-based Cellular Network Fault Diagnosis

被引:0
|
作者
Gao, Zongzhen [1 ]
Liu, Wenlai [1 ]
机构
[1] Linyi Univ, Sch Comp Sci & Engn, Linyi 276000, Peoples R China
关键词
Fault diagnosis; Naive Bayes; Knowledge data fusion; Graph Convolutional Neural Network; INTERNET; SYSTEMS;
D O I
10.17531/ein/194672
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To solve the problem of upstream and downlink interference in cellular networks, a graph convolutional neural networks-based novel fault diagnosis method for semi-supervised cellular networks is proposed. In the research design method, the extreme gradient enhancement technique is first used to enhance the fault diagnosis feature data of cellular networks. Then, the graph convolutional neural network is used to train and learn the fault diagnosis feature dataset of cellular networks, achieving fault diagnosis prediction of cellular networks. In the process of training the cellular network fault diagnosis model, data augmentation techniques were used to enhance the training level of the model, while Bayesian networks were used for pre diagnosis to improve the diagnostic accuracy of the modified model. The experimental results show that the cellular network fault diagnosis model constructed in the study can achieve a classification accuracy of 90% for training samples during training and testing, while other models can only achieve a maximum of about 85%. The model constructed by the research can achieve a diagnostic accuracy of over 90% in the practical application of cellular network fault diagnosis, while taking only 6 seconds. This algorithm can diagnose faults in complex cellular network environment, which has high accuracy and practicability, and can effectively improve user experience.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Rotating machinery fault diagnosis based on transfer learning and an improved convolutional neural network
    Jiang, Li
    Zheng, Chunpu
    Li, Yibing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (10)
  • [22] Fault diagnosis of rolling bearing based on an improved convolutional neural network using SFLA
    Li Y.
    Ma J.
    Jiang L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (24): : 187 - 193
  • [23] A fault diagnosis method based on improved parallel convolutional neural network for rolling bearing
    Xu, Tao
    Lv, Huan
    Lin, Shoujin
    Tan, Haihui
    Zhang, Qing
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2023, 237 (12) : 2759 - 2771
  • [24] Intelligent Diagnosis of Rolling Bearing Fault Based on Improved Convolutional Neural Network and LightGBM
    Xu, Yanwei
    Cai, Weiwei
    Wang, Liuyang
    Xie, Tancheng
    SHOCK AND VIBRATION, 2021, 2021
  • [25] Fault diagnosis strategy of a wind power bearing based on an improved convolutional neural network
    Chang M.
    Shen Y.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2021, 49 (06): : 131 - 137
  • [26] A Graph Convolutional Networks-Based DDoS Detection Model
    Saunders, Braden J.
    Kisanga, Patrice
    Carvalho, Glaucio H. S.
    Woungang, Isaac
    18TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE, SYSCON 2024, 2024,
  • [27] An interpretable graph convolutional neural network based fault diagnosis method for building energy systems
    Li, Guannan
    Yao, Zhanpeng
    Chen, Liang
    Li, Tao
    Xu, Chengliang
    BUILDING SIMULATION, 2024, 17 (07) : 1113 - 1136
  • [28] Fault diagnosis for photovoltaic array based on convolutional neural network and electrical time series graph
    Lu, Xiaoyang
    Lin, Peijie
    Cheng, Shuying
    Lin, Yaohai
    Chen, Zhicong
    Wu, Lijun
    Zheng, Qianying
    ENERGY CONVERSION AND MANAGEMENT, 2019, 196 : 950 - 965
  • [29] A Multiscale Graph Convolutional Neural Network Framework for Fault Diagnosis of Rolling Bearing
    Yin, Peizhe
    Nie, Jie
    Liang, Xinyue
    Yu, Shusong
    Wang, Chenglong
    Nie, Weizhi
    Ding, Xiangqian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [30] Fault Diagnosis of Energy Networks Based on Improved Spatial-Temporal Graph Neural Network With Massive Missing Data
    Zhang, Jingfei
    Cheng, Yean
    He, Xiao
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (03) : 3576 - 3587