Optimization Design of Blades Based on Multi-Objective Particle Swarm Optimization Algorithm

被引:0
|
作者
Li, Zihao [1 ]
Wang, Wei [1 ]
Xie, Yonghe [1 ]
Li, Detang [1 ]
机构
[1] Zhejiang Ocean Univ, Sch Naval Architecture & Maritime, Zhoushan 316000, Peoples R China
关键词
floating offshore wind turbines; multi-objective PSO algorithm; aerodynamic efficiency; structural strength; collaborative optimization;
D O I
10.3390/jmse13030486
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
Among renewable energy sources derived from the ocean, wind power has developed rapidly. This article proposes an optimization algorithm framework that integrates two objectives: aerodynamic shape optimization and structural optimization. For practical reasons, the 5-MW wind turbine blade was selected as the research object, and the sea conditions near the East China Sea were chosen as the environmental parameters for its service environment. The FAST simulation software was employed for verification purposes. The results indicated that the optimized blade not only meets the target power output but also possesses unique economic advantages, such as being lightweight and exhibiting low aerodynamic force.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Integrated Optimization by Multi-Objective Particle Swarm Optimization
    Kawarabayashi, Masaru
    Tsuchiya, Junichi
    Yasuda, Keiichiro
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2010, 5 (01) : 79 - 81
  • [42] Optimization of the Hydrological Model Using Multi-objective Particle Swarm Optimization Algorithm
    黄晓敏
    雷晓辉
    王宇晖
    朱连勇
    Journal of Donghua University(English Edition), 2011, 28 (05) : 519 - 522
  • [43] Adaptive evolutionary multi-objective particle swarm optimization algorithm
    Chen, Min-You
    Zhang, Cong-Yu
    Luo, Ci-Yong
    Kongzhi yu Juece/Control and Decision, 2009, 24 (12): : 1851 - 1855
  • [44] An Improved Hybrid Multi-objective Particle Swarm Optimization Algorithm
    Zhou, Zuan
    Dai, Guangming
    Fang, Pan
    Chen, Fangjie
    Tan, Yi
    ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2008, 5370 : 181 - 188
  • [45] IMOPSO: An Improved Multi-objective Particle Swarm Optimization Algorithm
    Ma, Borong
    Hua, Jun
    Ma, Zhixin
    Li, Xianbo
    PROCEEDINGS OF 2016 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2016, : 376 - 380
  • [46] Multi-objective adaptive chaotic particle swarm optimization algorithm
    Yang, Jing-Ming
    Ma, Ming-Ming
    Che, Hai-Jun
    Xu, De-Shu
    Guo, Qiu-Chen
    Kongzhi yu Juece/Control and Decision, 2015, 30 (12): : 2168 - 2174
  • [47] Adaptive Niche Multi-Objective Particle Swarm Optimization Algorithm
    Li, Yinghai
    Zhou, Jianzhong
    Qin, Hui
    Lu, Youlin
    Yang, Junjie
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2008, : 418 - 422
  • [48] Multi-objective optimization of a Stirling cooler using particle swarm optimization algorithm
    Wang, Lifeng
    Zheng, Pu
    Ji, Yuzhe
    Chen, Xi
    SCIENCE AND TECHNOLOGY FOR THE BUILT ENVIRONMENT, 2022, 28 (03) : 379 - 390
  • [49] Algorithm and application of cellular multi-objective particle swarm optimization
    Zhu, D. (dlzhu@ctgu.edu.cn), 1600, Chinese Society of Agricultural Machinery (44):
  • [50] A smart particle swarm optimization algorithm for multi-objective problems
    Huo, Xiaohua
    Shen, Lincheng
    Zhu, Huayong
    COMPUTATIONAL INTELLIGENCE AND BIOINFORMATICS, PT 3, PROCEEDINGS, 2006, 4115 : 72 - 80