Spin gapped metals: A novel class of materials for multifunctional spintronic devices

被引:0
|
作者
Sasioglu, E. [1 ]
Tas, M. [2 ]
Ghosh, S. [3 ,4 ]
Beida, W. [5 ,6 ,7 ]
Sanyal, B. [4 ]
Blugel, S. [6 ,7 ]
Mertig, I. [1 ]
Galanakis, I. [8 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Inst Phys, D-06120 Halle, Saale, Germany
[2] Gebze Tech Univ, Dept Phys, TR-41400 Kocaeli, Turkiye
[3] Cent Univ Kashmir, Dept Phys, Ganderbal 191131, Jammu And Kashm, India
[4] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden
[5] Rhein Westfal TH Aachen, Phys Dept, D-52062 Aachen, Germany
[6] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[7] JARA, D-52425 Julich, Germany
[8] Univ Patras, Sch Nat Sci, Dept Mat Sci, Patras 26504, Greece
基金
瑞典研究理事会;
关键词
Heusler compounds; Ab-initio calculations; Density functional theory calculations; Gapped metals; Magnetic materials; BAND-TAILS; HEUSLER ALLOYS; COMBINATORIAL;
D O I
10.1016/j.jmmm.2025.172792
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Gapped metals, a recently proposed class of materials, possess a band gap slightly above or below the Fermi level, behaving as intrinsic p- or n-type semiconductors without requiring external doping. Inspired by this concept, we propose a novel material class: "spin gapped metals". These materials exhibit intrinsic p- or ntype character independently for each spin channel, similar to dilute magnetic semiconductors but without the need for transition metal doping. A key advantage of spin gapped metals lies in the absence of band tails that exist within the band gap of conventional p- and n-type semiconductors. Band tails degrade the performance of devices like tunnel field-effect transistors (causing high subthreshold slopes) and negative differential resistance tunnel diodes (resulting in low peak-to-valley current ratios). Here, we demonstrate the viability of spin gapped metals using first-principles electronic band structure calculations on half-Heusler compounds. Our analysis reveals compounds displaying both gapped metal and spin gapped metal behavior, paving the way for next-generation multifunctional devices in spintronics and nanoelectronics.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Potential of MXenes as a novel material for spintronic devices: a review
    Amrillah, Tahta
    Hermawan, Angga
    Cristian, Yeremia Budi
    Oktafiani, Agustina
    Dewi, Diva Meisya Maulina
    Amalina, Ilma
    Darminto
    Juang, Jenh-Yih
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (28) : 18584 - 18608
  • [42] Magnetic skyrmions: materials, manipulation, detection, and applications in spintronic devices
    Zhang, Huai
    Zhang, Yajiu
    Hou, Zhipeng
    Qin, Minghui
    Gao, Xingsen
    Liu, Junming
    MATERIALS FUTURES, 2023, 2 (03):
  • [43] Spintronic devices based on topological and two-dimensional materials
    Jiang, Long-Xing
    Li, Qing-Chao
    Xu, Zhang
    Li, Jing-Feng
    Jing, Zhang
    Zu-Xin, Chen
    Min, Zeng
    Hao, Wu
    ACTA PHYSICA SINICA, 2024, 73 (01)
  • [44] Thermal effects in spintronic materials and devices: An experimentalist's guide
    Zink, B. L.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 564
  • [45] Effects of Electric and Magnetic Fields on the Spin Current in Organic Spintronic Devices
    Naseri, M. Shahri
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2018, 31 (07) : 2283 - 2286
  • [46] Recent spinterfacial studies targeted to spin manipulation in molecular spintronic devices
    谷现荣
    郭立丹
    孙向南
    Chinese Physics B, 2018, 27 (10) : 100 - 110
  • [47] Recent spinterfacial studies targeted to spin manipulation in molecular spintronic devices
    Gu, Xian-Rong
    Guo, Li-Dan
    Sun, Xiang-Nan
    CHINESE PHYSICS B, 2018, 27 (10)
  • [48] Cobalt-doped β-peptide nanotubes:: A class of spintronic materials
    Sanyal, Biplab
    Eriksson, Olle
    Arvidsson, Per I.
    PHYSICAL REVIEW B, 2008, 77 (15)
  • [49] Iron(II) Clathrochelates in Molecular Spintronic Devices: A Vertical Spin Valve
    I. S. Zlobin
    R. R. Aisin
    V. V. Novikov
    Russian Journal of Coordination Chemistry, 2022, 48 : 33 - 40
  • [50] Effects of Electric and Magnetic Fields on the Spin Current in Organic Spintronic Devices
    M. Shahri Naseri
    Journal of Superconductivity and Novel Magnetism, 2018, 31 : 2283 - 2286