Smooth connectivity in real algebraic varieties

被引:0
|
作者
Cummings, Joseph [1 ]
Hauenstein, Jonathan D. [1 ]
Hong, Hoon [2 ]
Smyth, Clifford D. [3 ]
机构
[1] Univ Notre Dame, Dept Appl & Computat Math & Stat, Notre Dame, IN 46556 USA
[2] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[3] Univ North Carolina Greensboro, Dept Math & Stat, Greensboro, NC 27402 USA
关键词
Connectivity; Smooth points; Real algebraic sets; Polynomial systems; Homotopy continuation; Numerical algebraic geometry; COMPUTING ROADMAPS;
D O I
10.1007/s11075-024-01952-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A standard question in real algebraic geometry is to compute the number of connected components of a real algebraic variety in affine space. This manuscript provides algorithms for computing the number of connected components, the Euler characteristic, and deciding the connectivity between two points for a smooth manifold arising as the complement of a real hypersurface of a real algebraic variety. When considering the complement of the set of singular points of a real algebraic variety, this yields an approach for determining smooth connectivity in a real algebraic variety. The method is based upon gradient ascent/descent paths on the real algebraic variety inspired by a method proposed by Hong, Rohal, Safey El Din, and Schost for complements of real hypersurfaces. Several examples are included to demonstrate the approach.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] ELEMENTARY STRUCTURE OF REAL ALGEBRAIC VARIETIES
    WHITNEY, H
    ANNALS OF MATHEMATICS, 1957, 66 (03) : 545 - 556
  • [22] The Witt group of real algebraic varieties
    Karoubi, Max
    Schlichting, Marco
    Weibel, Charles
    JOURNAL OF TOPOLOGY, 2016, 9 (04) : 1257 - 1302
  • [23] CHARACTERIZATION OF IDEALS OF REAL ALGEBRAIC VARIETIES
    RISLER, JJ
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 271 (23): : 1171 - &
  • [24] DEGENERATIONS OF REAL ALGEBRAIC-VARIETIES
    KRASNOV, VA
    MATHEMATICS OF THE USSR-IZVESTIYA, 1985, 49 (04): : 115 - 140
  • [25] ON PROJECTIONS OF REAL ALGEBRAIC-VARIETIES
    ANDRADAS, C
    GAMBOA, JM
    PACIFIC JOURNAL OF MATHEMATICS, 1986, 121 (02) : 281 - 291
  • [26] DIVISORS ON REAL ALGEBRAIC-VARIETIES
    SILHOL, R
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1983, 2B (01): : 193 - 206
  • [27] A notion of seminormalization for real algebraic varieties
    Bernard, Francois
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (04):
  • [28] Schwartz Functions on Real Algebraic Varieties
    Elazar, Boaz
    Shaviv, Ary
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2018, 70 (05): : 1008 - 1037
  • [29] Quillen property of real algebraic varieties
    Putinar, Mihai
    Scheiderer, Claus
    MUENSTER JOURNAL OF MATHEMATICS, 2014, 7 (02): : 671 - 696
  • [30] REAL ALGEBRAIC MORPHISMS INTO FLAG VARIETIES
    KUCHARZ, W
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1994, 8A (03): : 345 - 352