Soil carbon and nitrogen cycling at the atmosphere-soil interface: Quantifying the responses of biocrust-soil interactions to global change

被引:0
|
作者
Witzgall, K. [1 ]
Hesse, B. D. [2 ,3 ]
Pacay-Barrientos, N. L. [1 ]
Jansa, J. [4 ]
Seguel, O. [5 ]
Oses, R. [6 ]
Buegger, F. [7 ]
Guigue, J. [1 ]
Rojas, C. [8 ,9 ]
Rousk, K. [10 ]
Grams, T. E. E. [2 ]
Pietrasiak, N. [11 ]
Mueller, C. W. [1 ,12 ,13 ]
机构
[1] Tech Univ Munich, TUM Sch Life Sci, Soil Sci, Freising Weihenstephan, Germany
[2] Tech Univ Munich, TUM Sch Life Sci, Land Surface Atmosphere Interact AG Ecophysiol Pla, Freising Weihenstephan, Germany
[3] Univ Nat Resources & Life Sci, Inst Bot BOT, Vienna, Austria
[4] Czech Acad Sci, Inst Microbiol, Prague, Czech Republic
[5] Univ Chile, Fac Ciencias Agron, Santiago, Chile
[6] Univ Atacama, Ctr Reg Invest Desarrollo Sustentable Atacama, CRIDESAT, Copiapo, Chile
[7] German Res Ctr Environm Hlth, Helmholtz Zentrum Munchen GmbH, Res Unit Environm Simulat, Neuherberg, Germany
[8] Univ OHiggins, Lab Soil Microbial Ecol & Biogeochem LEMiBiS, San Fernando, Chile
[9] Ctr Appl Ecol & Sustainabil CAPES, Santiago, Chile
[10] Univ Copenhagen, Dept Biol, Terr Ecol Sect, Copenhagen, Denmark
[11] New Mexico State Univ, Dept Plant & Environm Sci, Las Cruces, NM USA
[12] Tech Univ Berlin, Chair Soil Sci, Inst Ecol, Berlin, Germany
[13] Univ Copenhagen, Dept Geosci & Nat Resource Management, Copenhagen, Denmark
基金
美国国家科学基金会;
关键词
biocrust; biological soil crusts; C cycle; climate change; dryland; dual labeling; PLFA; soil organic matter; ORGANIC-MATTER; MICROBIAL COMMUNITIES; FUNGAL COMMUNITIES; USE EFFICIENCY; CLIMATE-CHANGE; CRUSTS; RESPIRATION; DISTURBANCE; ECOSYSTEMS; DIVERSITY;
D O I
10.1111/gcb.17519
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
In drylands, where water scarcity limits vascular plant growth, much of the primary production occurs at the soil surface. This is where complex macro- and microbial communities, in an intricate bond with soil particles, form biological soil crusts (biocrusts). Despite their critical role in regulating C and N cycling in dryland ecosystems, there is limited understanding of the fate of biologically fixed C and N from biocrusts into the mineral soil, or how climate change will affect C and N fluxes between the atmosphere, biocrusts, and subsurface soils. To address these gaps, we subjected biocrust-soil systems to experimental warming and drought under controlled laboratory conditions, monitored CO2 fluxes, and applied dual isotopic labeling pulses ((CO2)-C-13 and N-15(2)). This allowed detailed quantification of elemental pathways into specific organic matter (OM) pools and microbial biomass via density fractionation and phospholipid fatty acid analyses. While biocrusts modulated CO2 fluxes regardless of the temperature regime, drought severely limited their photosynthetic C uptake to the extent that the systems no longer sustained net C uptake. Furthermore, the effect of biocrusts extended into the underlying 1 cm of mineral soil, where C and N accumulated as mineral-associated OM (MAOM(<63 mu m)). This was strongly associated with increased relative dominance of fungi, suggesting that fungal hyphae facilitate the downward C and N translocation and subsequent MAOM formation. Most strikingly, however, these pathways were disrupted in systems exposed to warming, where no effects of biocrusts on the elemental composition of the underlying soil nor on MAOM were determined. This was further associated with reduced net biological N fixation under combined warming and drought, highlighting how changing climatic conditions diminish some of the most fundamental ecosystem functions of biocrusts, with detrimental repercussions for C and N cycling and the persistence of soil organic matter pools in dryland ecosystems.<br />
引用
收藏
页数:18
相关论文
共 50 条
  • [21] The global significance of omitting soil erosion from soil organic carbon cycling schemes
    Chappell, Adrian
    Baldock, Jeffrey
    Sanderman, Jonathan
    NATURE CLIMATE CHANGE, 2016, 6 (02) : 187 - 191
  • [22] The global significance of omitting soil erosion from soil organic carbon cycling schemes
    Chappell A.
    Baldock J.
    Sanderman J.
    Nature Climate Change, 2016, 6 (2) : 187 - 191
  • [23] Quantifying global soil carbon losses in response to warming
    T. W. Crowther
    K. E. O. Todd-Brown
    C. W. Rowe
    W. R. Wieder
    J. C. Carey
    M. B. Machmuller
    B. L. Snoek
    S. Fang
    G. Zhou
    S. D. Allison
    J. M. Blair
    S. D. Bridgham
    A. J. Burton
    Y. Carrillo
    P. B. Reich
    J. S. Clark
    A. T. Classen
    F. A. Dijkstra
    B. Elberling
    B. A. Emmett
    M. Estiarte
    S. D. Frey
    J. Guo
    J. Harte
    L. Jiang
    B. R. Johnson
    G. Kröel-Dulay
    K. S. Larsen
    H. Laudon
    J. M. Lavallee
    Y. Luo
    M. Lupascu
    L. N. Ma
    S. Marhan
    A. Michelsen
    J. Mohan
    S. Niu
    E. Pendall
    J. Peñuelas
    L. Pfeifer-Meister
    C. Poll
    S. Reinsch
    L. L. Reynolds
    I. K. Schmidt
    S. Sistla
    N. W. Sokol
    P. H. Templer
    K. K. Treseder
    J. M. Welker
    M. A. Bradford
    Nature, 2016, 540 : 104 - 108
  • [24] Quantifying global soil carbon losses in response to warming
    Crowther, T. W.
    Todd-Brown, K. E. O.
    Rowe, C. W.
    Wieder, W. R.
    Carey, J. C.
    Machmuller, M. B.
    Snoek, B. L.
    Fang, S.
    Zhou, G.
    Allison, S. D.
    Blair, J. M.
    Bridgham, S. D.
    Burton, A. J.
    Carrillo, Y.
    Reich, P. B.
    Clark, J. S.
    Classen, A. T.
    Dijkstra, F. A.
    Elberling, B.
    Emmett, B. A.
    Estiarte, M.
    Frey, S. D.
    Guo, J.
    Harte, J.
    Jiang, L.
    Johnson, B. R.
    Kroel-Dulay, G.
    Larsen, K. S.
    Laudon, H.
    Lavallee, J. M.
    Luo, Y.
    Lupascu, M.
    Ma, L. N.
    Marhan, S.
    Michelsen, A.
    Mohan, J.
    Niu, S.
    Pendall, E.
    Penuelas, J.
    Pfeifer-Meister, L.
    Poll, C.
    Reinsch, S.
    Reynolds, L. L.
    Schmidt, I. K.
    Sistla, S.
    Sokol, N. W.
    Templer, P. H.
    Treseder, K. K.
    Welker, J. M.
    Bradford, M. A.
    NATURE, 2016, 540 (7631) : 104 - +
  • [25] Quantifying Urban Bioswale Nitrogen Cycling in the Soil, Gas, and Plant Phases
    Shetty, Nandan
    Hu, Ranran
    Hoch, Jessica
    Mailloux, Brian
    Palmer, Matthew
    Menge, Duncan N. L.
    McGuire, Krista
    McGillis, Wade
    Culligan, Patricia
    WATER, 2018, 10 (11)
  • [26] RANGELAND SOIL CARBON AND NITROGEN RESPONSES TO GRAZING
    MANLEY, JT
    SCHUMAN, GE
    REEDER, JD
    HART, RH
    JOURNAL OF SOIL AND WATER CONSERVATION, 1995, 50 (03) : 294 - 298
  • [27] Responses of soil nitrogen dynamics in a Mojave Desert ecosystem to manipulations in soil carbon and nitrogen availability
    Schaeffer, SM
    Billings, SA
    Evans, RD
    OECOLOGIA, 2003, 134 (04) : 547 - 553
  • [28] Responses of soil nitrogen dynamics in a Mojave Desert ecosystem to manipulations in soil carbon and nitrogen availability
    S. M. Schaeffer
    S. A. Billings
    R. D. Evans
    Oecologia, 2003, 134 : 547 - 553
  • [29] Effects of land use change on soil carbon and nitrogen in purple paddy soil
    Li, Xiu-Zhi
    Han, Bang-Shuai
    Yang, Fan
    Hu, Cong-Yue
    Han, Guang-Zhong
    Huang, Lai-Ming
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 314
  • [30] Interactions between tall oatgrass invasion and soil nitrogen cycling
    Hinckley, Eve-Lyn S.
    Miller, Hannah R.
    Lezberg, Ann
    Anacker, Brian
    OECOLOGIA, 2022, 199 (02) : 419 - 426