The Averaging Principle for Caputo Type Fractional Stochastic Differential Equations with Lévy Noise

被引:0
|
作者
Ren, Lulu [1 ]
Xiao, Guanli [2 ]
机构
[1] Wuhan Text Univ, Sch Math & Phys Sci, Wuhan 430200, Peoples R China
[2] Guizhou Univ, Dept Math, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
averaging principle; Caputo fractional derivative; stochastic differential equations; L & eacute; vy noise; <italic>p</italic>th moment;
D O I
10.3390/fractalfract8100595
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the averaging principle for Caputo type fractional stochastic differential equations with L & eacute;vy noise is investigated with consideration of a new method for dealing with singular integrals. Firstly, the estimate on higher moments for the solution is given. Secondly, under some suitable assumptions, we prove the averaging principle for Caputo type fractional stochastic differential equations with L & eacute;vy noise by using the H & ouml;lder inequality. Finally, a simulation example is given to verify the theoretical results.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] The Averaging Principle for Stochastic Fractional Partial Differential Equations with Fractional Noises
    Jing Yuanyuan
    Li Zhi
    Xu Liping
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2021, 34 (01): : 51 - 66
  • [22] On Averaging Principle for Caputo-Hadamard Fractional Stochastic Differential Pantograph Equation
    Mouy, Mounia
    Boulares, Hamid
    Alshammari, Saleh
    Alshammari, Mohammad
    Laskri, Yamina
    Mohammed, Wael W.
    FRACTAL AND FRACTIONAL, 2023, 7 (01)
  • [23] Space-time fractional stochastic partial differential equations with Lévy noise
    Xiangqian Meng
    Erkan Nane
    Fractional Calculus and Applied Analysis, 2020, 23 : 224 - 249
  • [24] Averaging principle for fractional stochastic differential equations with LP convergence
    Wang, Zhaoyang
    Lin, Ping
    APPLIED MATHEMATICS LETTERS, 2022, 130
  • [25] The existence and averaging principle for stochastic fractional differential equations with impulses
    Zou, Jing
    Luo, Danfeng
    Li, Mengmeng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (06) : 6857 - 6874
  • [26] Existence, Uniqueness, and Averaging Principle of Fractional Neutral Stochastic Differential Equations in the Lp Space with the Framework of the ψ-Caputo Derivative
    Djaouti, Abdelhamid Mohammed
    Khan, Zareen A.
    Liaqat, Muhammad Imran
    Al-Quran, Ashraf
    MATHEMATICS, 2024, 12 (07)
  • [27] The Existence and Averaging Principle for Caputo Fractional Stochastic Delay Differential Systems with Poisson Jumps
    Bai, Zhenyu
    Bai, Chuanzhi
    AXIOMS, 2024, 13 (01)
  • [28] The Averaging Principle for Hilfer Fractional Stochastic Evolution Equations with Levy Noise
    Yang, Min
    Lv, Ting
    Wang, Qiru
    FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [29] An Averaging Principle For Stochastic Differential Equations Of Fractional Order 0 < α < 1
    Wenjing Xu
    Wei Xu
    Kai Lu
    Fractional Calculus and Applied Analysis, 2020, 23 : 908 - 919
  • [30] An Averaging Principle for Stochastic Differential Delay Equations with Fractional Brownian Motion
    Xu, Yong
    Pei, Bin
    Li, Yongge
    ABSTRACT AND APPLIED ANALYSIS, 2014,