Simultaneous In Vivo Assembly and Targeted Genome Integration of Gene Clusters in Trichoderma reesei

被引:0
|
作者
Fang, Yu [1 ]
Meng, Xiangfeng [1 ]
Liu, Lin [1 ]
Li, Zhongye [1 ]
Jia, Kaili [1 ]
Liu, Weifeng [1 ]
机构
[1] Shandong Univ, Microbial Technol Inst, State Key Lab Microbial Technol, Qingdao 266237, Peoples R China
来源
ACS SYNTHETIC BIOLOGY | 2025年 / 14卷 / 02期
基金
中国国家自然科学基金;
关键词
<italic>in vivo</italic> DNA assembly; <italic>Trichodermareesei</italic>; homologous recombination; CRISPR; SATIMD; targeted genome integration; ARTIFICIAL CHROMOSOMES; REPAIR; SYSTEM; YACS;
D O I
10.1021/acssynbio.4c00810
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The saprophytic filamentous fungus Trichoderma reesei represents one of the most prolific cellulase producers and also has the potential to be developed into a tractable fungal host for biosynthesizing secondary metabolite products. To expedite the genetic engineering of filamentous fungi, efficient DNA assembly processes that can facilitate the transfer of large-sized DNA to fungal hosts, including T. reesei, are still in demand. Here, we developed a method for the simultaneous in vivo assembly and targeted genome integration of multiple DNA fragments (SATIMD) in T. reesei. While efficient orderly DNA end fusions were achieved by homologous recombination (HR) with various lengths of sequence overlaps (100-500 bp), the assembled DNA was also precisely integrated into a specific locus when combined with CRISPR/Cas9-mediated genome cutting. Specifically, we have used this method to achieve the assembly and functional expression of T. reesei key transcriptional activator Xyr1 for cellulase genes. Moreover, fusions and targeted integration of up to 10 different DNA fragments comprising the 32.7 kb sorbicillinoids biosynthetic gene cluster via a single-step transformation was demonstrated. We envision that SATIMD is a powerful tool not only useful for direct large heterologous gene cluster assembly in T. reesei but also can facilitate large-scale fungal strain genetic engineering.
引用
收藏
页码:575 / 584
页数:10
相关论文
共 50 条
  • [21] Targeted Genome Mining Reveals the Biosynthetic Gene Clusters of Natural Product CYP51 Inhibitors
    Liu, Nicholas
    Abramyan, Elizabeth D.
    Cheng, Wei
    Perlatti, Bruno
    Harvey, Colin J. B.
    Bills, Gerald F.
    Tang, Yi
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (16) : 6043 - 6047
  • [22] In Vivo Selection of Engineered Human CD34+ HSPCs Using Targeted Gene Integration
    Haworth, Kevin G.
    Atkins, Megan A.
    Weitz, Sarah E.
    Ironside, Christina
    Norgaard, Zachary K.
    McAllister, Cristina E.
    Kiem, Hans-Peter
    MOLECULAR THERAPY, 2017, 25 (05) : 236 - 236
  • [23] ACtivE: Assembly and CRISPR-Targeted in Vivo Editing for Yeast Genome Engineering Using Minimum Reagents and Time
    Malci, Koray
    Jonguitud-Borrego, Nestor
    Waillet, Hugo van der Straten
    Puodziunaite, Urte
    Johnston, Emily J.
    Rosser, Susan J.
    Rios-Solis, Leonardo
    ACS SYNTHETIC BIOLOGY, 2022, 11 (11): : 3629 - 3643
  • [24] Integration of additional copies of Trichoderma reesei gene encoding protein O-mannosyltransferase I results in a decrease of the enzyme activity and alteration of cell wall composition
    Gorka-Niec, Wioletta
    Kania, Anna
    Perlinska-Lenart, Urszula
    Smolenska-Sym, Gabriela
    Palamarczyk, Grazyna
    Kruszewska, Joanna S.
    FUNGAL BIOLOGY, 2011, 115 (02) : 124 - 132
  • [25] In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration
    Suzuki, Keiichiro
    Tsunekawa, Yuji
    Hernandez-Benitez, Reyna
    Wu, Jun
    Zhu, Jie
    Kim, Euiseok J.
    Hatanaka, Fumiyuki
    Yamamoto, Mako
    Araoka, Toshikazu
    Li, Zhe
    Kurita, Masakazu
    Hishida, Tomoaki
    Li, Mo
    Aizawa, Emi
    Guo, Shicheng
    Chen, Song
    Goebl, April
    Soligalla, Rupa Devi
    Qu, Jing
    Jiang, Tingshuai
    Fu, Xin
    Jafari, Maryam
    Esteban, Concepcion Rodriguez
    Berggern, W. Travis
    Lajara, Jeronimo
    Nunez-Delicado, Estrella
    Guillen, Pedro
    Campistol, Josep M.
    Matsuzaki, Fumio
    Liu, Guang-Hui
    Magistretti, Pierre
    Zhang, Kun
    Callaway, Edward M.
    Zhang, Kang
    Belmonte, Juan Carlos Izpisua
    NATURE, 2016, 540 (7631) : 144 - +
  • [26] In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration
    Keiichiro Suzuki
    Yuji Tsunekawa
    Reyna Hernandez-Benitez
    Jun Wu
    Jie Zhu
    Euiseok J. Kim
    Fumiyuki Hatanaka
    Mako Yamamoto
    Toshikazu Araoka
    Zhe Li
    Masakazu Kurita
    Tomoaki Hishida
    Mo Li
    Emi Aizawa
    Shicheng Guo
    Song Chen
    April Goebl
    Rupa Devi Soligalla
    Jing Qu
    Tingshuai Jiang
    Xin Fu
    Maryam Jafari
    Concepcion Rodriguez Esteban
    W. Travis Berggren
    Jeronimo Lajara
    Estrella Nuñez-Delicado
    Pedro Guillen
    Josep M. Campistol
    Fumio Matsuzaki
    Guang-Hui Liu
    Pierre Magistretti
    Kun Zhang
    Edward M. Callaway
    Kang Zhang
    Juan Carlos Izpisua Belmonte
    Nature, 2016, 540 : 144 - 149
  • [27] Site-directed genome modification: nucleic acid and protein modules for targeted integration and gene correction
    Kolb, AF
    Coates, CJ
    Kaminski, JM
    Summers, JB
    Miller, AD
    Segal, DJ
    TRENDS IN BIOTECHNOLOGY, 2005, 23 (08) : 399 - 406
  • [28] Molecular characterization of precise in vivo targeted gene integration in human cells using AAVHSC15
    Chen, Huei-Mei
    Resendes, Rachel
    Ghodssi, Azita
    Sookiasian, Danielle
    Tian, Michael
    Dollive, Serena
    Adamson-Small, Laura
    Avila, Nancy
    Tazearslan, Cagdas
    Thompson, John F.
    Ellsworth, Jeff L.
    Francone, Omar
    Seymour, Albert
    Wright, Jason B.
    PLOS ONE, 2020, 15 (05):
  • [29] In vivo gene knockout followed by targeted gene insertion results in simultaneous reduced mutant protein levels and durable transgene expression
    Xie, J.
    Huang, H-R
    Moroski-Erkul, C.
    Odate, S.
    Dymek, Z.
    Frick, S.
    Pink, M.
    Shaw, C.
    Wang, C.
    Gong, G.
    Hartfort, S.
    Sattler, R.
    White, D.
    Lai, K.
    Chalothorn, D.
    Zambrowicz, B.
    Kyratsous, C.
    Forget, A.
    HUMAN GENE THERAPY, 2019, 30 (11) : A17 - A18
  • [30] Transfer RNA gene-targeted integration:: an adaptation of retrotransposable elements to survive in the compact Dictyostelium discoideum genome
    Winckler, T
    Szafranski, K
    Glöckner, G
    CYTOGENETIC AND GENOME RESEARCH, 2005, 110 (1-4) : 288 - 298