Finite element methods for 3D interface problems on local anisotropic hybrid meshes

被引:0
|
作者
Hu, Jun [1 ,2 ,3 ]
Wang, Hua [4 ]
机构
[1] Peking Univ, LMAM, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Peking Univ, Chongqing Res Inst Big Data, Chongqing 401332, Peoples R China
[4] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
3D interface problem; Unfitted mesh; Anisotropic element; Interpolation error estimate;
D O I
10.1007/s10092-024-00633-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new finite element method designed to address three-dimensional interface problems. This method employs a quasi-uniform, unfitted mesh as the foundation for constructing the grid, which incorporates anisotropic tetrahedral, pyramidal, and prism elements near the interface. We conduct a rigorous analysis of the optimal approximation capabilities of anisotropic elements, with a specific focus on their linear convergence rates in the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1$$\end{document}-norm, excluding a logarithmic factor related to the intersection of the interface and element edges. Additionally, we thoroughly investigate errors arising from transitioning between the continuous and discretized interfaces. After applying suitable approximations to the discretized interface, this logarithmic factor is expressed as |lnh|1/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\ln h|<^>{1/2}$$\end{document}. The convergence rate in the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1$$\end{document}-norm is quantified as O(|logh|1/2h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(|\log h|<^>{1/2} h)$$\end{document}. Numerical experiments are presented to corroborate these theoretical results.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Optimal Finite Element Methods for Interface Problems
    Xu, Jinchao
    Zhang, Shuo
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXII, 2016, 104 : 77 - 91
  • [22] Local pointwise convergence of the 3D finite element
    Liu, Jing-hong
    Zhu, Qi-ding
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2023, 38 (02) : 210 - 222
  • [23] Local pointwise convergence of the 3D finite element
    LIU Jing-hong
    ZHU Qi-ding
    Applied Mathematics:A Journal of Chinese Universities, 2023, 38 (02) : 210 - 222
  • [24] Local pointwise convergence of the 3D finite element
    Jing-hong Liu
    Qi-ding Zhu
    Applied Mathematics-A Journal of Chinese Universities, 2023, 38 : 210 - 222
  • [25] FINITE-VOLUME METHODS FOR ANISOTROPIC DIFFUSION PROBLEMS ON SKEWED MESHES
    Liu, Xiaogang
    Ming, Pingjian
    Zhang, Wenping
    Fu, Lirong
    Jing, Lilong
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2015, 68 (03) : 239 - 256
  • [26] Comparison of some finite element methods for solving 3D heat transfer problems
    Pelissou, Céline
    Massoni, Elisabeth
    Chenot, Jean-Loup
    Revue Europeenne des Elements, 2004, 13 (5-7): : 679 - 690
  • [27] Parameterized template meshes for 2D and 3D finite element modeling
    Rodger, D.
    Hill-Cottingham, R.J.
    Vong, P.K.
    1610, IEEE, Piscataway, NJ, United States (36)
  • [28] Parameterized template meshes for 2D and 3D finite element modeling
    Rodger, D
    Hill-Cottingham, RJ
    Vong, PK
    IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (04) : 1610 - 1614
  • [29] Anisotropic immersed finite element methods for 1D elliptic interface systems
    Zhang, Huili
    Feng, Xinlong
    Wang, Kun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (01) : 523 - 543
  • [30] Plane hybrid stress element for 3D problems
    Xiao, QZ
    Dhanasekar, M
    FINITE ELEMENTS: TECHNIQUES AND DEVELOPMENTS, 2000, : 147 - 157