共 50 条
ATP1A3 dysfunction causes motor hyperexcitability and afterhyperpolarization loss in a dystonia model
被引:0
|作者:
Akkuratov, Evgeny E.
[1
]
Sorrell, Francesca
[2
]
Picton, Laurence D.
[3
]
Sousa, Vasco C.
[4
]
Paucar, Martin
[4
]
Jans, Daniel
[5
]
Svensson, Lill-Britt
[1
]
Lindskog, Maria
[6
,7
]
Fritz, Nicolas
[1
]
Liebmann, Thomas
[1
]
Sillar, Keith T.
[2
]
Rosewich, Hendrik
[8
,9
,10
]
Svenningsson, Per
[3
]
Brismar, Hjalmar
[1
,5
]
Miles, Gareth B.
[2
]
Aperia, Anita
[1
]
机构:
[1] Karolinska Inst, Dept Womens & Childrens Hlth, Sci Life Lab, S-17121 Solna, Sweden
[2] Univ St Andrews, Sch Psychol & Neurosci, St Andrews KY16 9JP, Fife, Scotland
[3] Karolinska Inst, Dept Neurosci, S-17177 Solna, Sweden
[4] Karolinska Inst, Dept Clin Neurosci, S-17165 Solna, Sweden
[5] KTH Royal Inst Technol, Dept Appl Phys, Sci Life Lab, S-17121 Solna, Sweden
[6] Uppsala Univ, Dept Med Cell Biol, S-75123 Uppsala, Sweden
[7] Karolinska Inst, Dept Neurobiol Care Sci & Soc, S-17121 Solna, Sweden
[8] Georg August Univ Gottingen, Univ Med Ctr Gottingen, Dept Pediat & Adolescent Med, D-37075 Gottingen, Germany
[9] Eberhard Karls Univ Tubingen, Univ Hosp, Clin Pediat & Adolescent Med, Dept Child Neurol,Dev Neurol,Gen Pediat,Endocrinol, D-72076 Tubingen, Germany
[10] Eberhard Karls Univ Tubingen, Fac Med, D-72076 Tubingen, Germany
基金:
英国惠康基金;
瑞典研究理事会;
关键词:
Na+/K+-ATPase;
rapid-onset dystonia-parkinsonism;
spinal cord;
motor control;
ATP1A3;
gene;
DE-NOVO MUTATIONS;
ALTERNATING HEMIPLEGIA;
SODIUM PUMPS;
ALPHA-3;
SPECTRUM;
CHILDHOOD;
MEMORY;
D O I:
10.1093/brain/awae373
中图分类号:
R74 [神经病学与精神病学];
学科分类号:
摘要:
Mutations in the gene encoding the alpha3 Na+/K+-ATPase isoform (ATP1A3) lead to movement disorders that manifest with dystonia, a common neurological symptom with many different origins, but for which the underlying molecular mechanisms remain poorly understood. We have generated an ATP1A3 mutant mouse that displays motor impairments and a hyperexcitable motor phenotype compatible with dystonia. We show that neurons harbouring this mutation are compromised in their ability to extrude raised levels of intracellular sodium, highlighting a profound deficit in neuronal sodium homeostasis. We show that the spinal motor network in ATP1A3 mutant mice has a reduced responsiveness to activity-dependent rises in intracellular sodium and that this is accompanied by loss of the Na+/K+-ATPase-mediated afterhyperpolarization in motor neurons. Taken together, our data support that the alpha3 Na+/K+-ATPase is important for cellular and spinal motor network homeostasis. These insights suggest that it may be useful to consider ways to compensate for this loss of a critical afterhyperpolarization-dependent control of neuronal excitability when developing future therapies for dystonia.
引用
收藏
页数:7
相关论文