Brown-Halmos type theorems for Toeplitz operators on the Bergman space of the upper half-plane

被引:0
|
作者
Alshormani, Farouq [1 ]
Guediri, Hocine [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Bergman space of the upper; half-plane; Brown-Halmos type theorem; Range of the Berezin transform; Finite rank Berezin symbols; Polyanalytic symbols; Products of Toeplitz operators; BEREZIN;
D O I
10.1016/j.jmaa.2024.128821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate Brown-Halmos type theorems which consist in characterizing when the product of two Bergman space Toeplitz operators is a Toeplitz operator whose symbol is the product of their symbols. The main involved technique is the characterization of functions that are in the range of the Berezin transform, and those which have finite rank Berezin symbols. We establish the upper half-plane analogues of the results of P. Ahern and & Zcaron;. & Ccaron;u & ccaron;kovi & cacute; (2001), P. Ahern (2004), and N.V. Rao (2018). In particular, we consider two classes of Toeplitz operators, namely those with bounded harmonic symbols and those with bi-analytic or tri-analytic symbols. Due to the unbounded character of the domain, many challenging difficulties occur, requiring more careful analysis. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] C*-Algebra Generated by Angular Toeplitz Operators on the Weighted Bergman Spaces Over the Upper Half-Plane
    Kevin Esmeral
    Egor A. Maximenko
    Nikolai Vasilevski
    Integral Equations and Operator Theory, 2015, 83 : 413 - 428
  • [22] C*-Algebra Generated by Angular Toeplitz Operators on the Weighted Bergman Spaces Over the Upper Half-Plane
    Esmeral, Kevin
    Maximenko, Egor A.
    Vasilevski, Nikolai
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2015, 83 (03) : 413 - 428
  • [23] Dynamics of properties of Toeplitz operators on the upper half-plane: Hyperbolic case
    Grudsky, S
    Karapetyants, A
    Vasilevski, N
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2004, 10 (01): : 119 - 138
  • [24] Dynamics of properties of Toeplitz operators on the upper half-plane: Parabolic case
    Grudsky, S
    Karapetyants, A
    Vasilevski, N
    JOURNAL OF OPERATOR THEORY, 2004, 52 (01) : 185 - 214
  • [25] Composition operators on the Dirichlet space of the upper half-plane
    Sharma, Ajay K.
    Sharma, Mehak
    Raj, Kuldip
    NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 198 - 206
  • [26] Vertical symbols, Toeplitz operators on weighted Bergman spaces over the upper half-plane and very slowly oscillating functions
    Herrera Yanez, Crispin
    Hutnik, Ondrej
    Maximenko, Egor A.
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (02) : 129 - 132
  • [27] Vertical Toeplitz Operators on the Upper Half-Plane and Very Slowly Oscillating Functions
    Crispin Herrera Yañez
    Egor A. Maximenko
    Nikolai Vasilevski
    Integral Equations and Operator Theory, 2013, 77 : 149 - 166
  • [28] Vertical Toeplitz Operators on the Upper Half-Plane and Very Slowly Oscillating Functions
    Herrera Yanez, Crispin
    Maximenko, Egor A.
    Vasilevski, Nikolai
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 77 (02) : 149 - 166
  • [29] Positive Toeplitz Operators on the Bergman Spaces of the Siegel Upper Half-Space
    Congwen Liu
    Jiajia Si
    Communications in Mathematics and Statistics, 2020, 8 : 113 - 134
  • [30] Positive Toeplitz Operators on the Bergman Spaces of the Siegel Upper Half-Space
    Liu, Congwen
    Si, Jiajia
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2020, 8 (01) : 113 - 134