Notes on double Roman domination edge critical graphs

被引:0
|
作者
Omar, Abdelhak [1 ]
Bouchou, Ahmed [1 ,2 ]
机构
[1] Univ Blida 1, Dept Math, LAMDA RO Lab, Blida, Algeria
[2] Univ Medea, Medea, Algeria
关键词
Double Roman domination; edge critical tree; edge supercritical graphs;
D O I
10.1051/ro/2025014
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a graph G = (V, E), a double Roman dominating function (DRDF) on a graph G is a function f : V -> {0, 1, 2, 3} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 3 or two vertices v1 and v2 for which f(v(1)) = f(v(2)) = 2, and every vertex u for which f(u) = 1 is adjacent to at least one vertex v for which f(v) >= 2. The weight w (f) of a double Roman dominating function f is the value w(f) = Sigma(u is an element of V) f(u). The minimum weight of a double Roman dominating function on a graph G is called the double Roman domination number of G, denoted by gamma(dR)(G). We say that G is gamma dR-edge critical, if gamma(dR)(G + e) < gamma(dR)(G) for each e is an element of E(<(G)over bar>), where (G) over bar is the complement of G, and k-gamma(dR)-edge supercritical if gamma(dR)(G) = k and gamma(dR)(G + e) = gamma(dR)(G) - 2 for every edge e is an element of E((G) over bar). In this paper, we characterize gamma(dR)-edge critical trees, answering a problem posed by Nazari-Moghaddam and Volkmann (Discrete Math. Algorithms App. 12 (2020) 2050020). Moreover, we investigate connected k-gamma(dR)-edge supercritical graphs for k is an element of {5, 6, 7, 8}.
引用
收藏
页码:959 / 966
页数:8
相关论文
共 50 条
  • [41] Some notes on signed edge domination in graphs
    Karami, H.
    Sheikholeslami, S. M.
    Khodkar, A.
    GRAPHS AND COMBINATORICS, 2008, 24 (01) : 29 - 35
  • [42] THE DIAMETER OF EDGE DOMINATION CRITICAL GRAPHS
    PARIS, M
    NETWORKS, 1994, 24 (04) : 261 - 262
  • [43] Local edge domination critical graphs
    Discrete Math, 1-3 (175):
  • [44] Global Domination Edge Critical Graphs
    Desormeaux, Wyatt J.
    Haynest, Teresa W.
    van der Merwe, Lucas
    UTILITAS MATHEMATICA, 2017, 104 : 151 - 160
  • [45] Some Notes on Signed Edge Domination in Graphs
    H. Karami
    S. M. Sheikholeslami
    A. Khodkar
    Graphs and Combinatorics, 2008, 24 : 29 - 35
  • [46] Local edge domination critical graphs
    Henning, MA
    Oellermann, OR
    Swart, HC
    DISCRETE MATHEMATICS, 1996, 161 (1-3) : 175 - 184
  • [47] Total domination edge critical graphs
    van der Merwe, LC
    Mynhardt, CM
    Haynes, TW
    UTILITAS MATHEMATICA, 1998, 54 : 229 - 240
  • [48] Some notes on the Roman domination number and Italian domination number in graphs
    Hajibaba, Maryam
    Rad, Nader Jafari
    1ST INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS 2017 (ICOAIMS 2017), 2017, 890
  • [49] Roman Domination Dot-critical Graphs
    Nader Jafari Rad
    Lutz Volkmann
    Graphs and Combinatorics, 2013, 29 : 527 - 533
  • [50] Roman Domination Dot-critical Graphs
    Rad, Nader Jafari
    Volkmann, Lutz
    GRAPHS AND COMBINATORICS, 2013, 29 (03) : 527 - 533