Machine learning models on the rigidity of welded shear tab connections
被引:0
|
作者:
Farivar, Behzad
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arkansas, Dept Civil Engn, 4190 Bell Engn Ctr, Fayetteville, AR 72701 USAUniv Arkansas, Dept Civil Engn, 4190 Bell Engn Ctr, Fayetteville, AR 72701 USA
Farivar, Behzad
[1
]
Ghassemi, Babak
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nat Resources & Life Sci, Inst Geomatics, Vienna BOKU, Peter Jordan Str 82, A-1190 Vienna, AustriaUniv Arkansas, Dept Civil Engn, 4190 Bell Engn Ctr, Fayetteville, AR 72701 USA
Ghassemi, Babak
[2
]
Yousefian, Kaveh
论文数: 0引用数: 0
h-index: 0
机构:
Iran Univ Sci & Technol, Sch Railway Engn, Railway Tracks Engn, Tehran 1684613114, IranUniv Arkansas, Dept Civil Engn, 4190 Bell Engn Ctr, Fayetteville, AR 72701 USA
Yousefian, Kaveh
[3
]
Murray, Cameron D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arkansas, Dept Civil Engn, 4190 Bell Engn Ctr, Fayetteville, AR 72701 USAUniv Arkansas, Dept Civil Engn, 4190 Bell Engn Ctr, Fayetteville, AR 72701 USA
Murray, Cameron D.
[1
]
机构:
[1] Univ Arkansas, Dept Civil Engn, 4190 Bell Engn Ctr, Fayetteville, AR 72701 USA
[2] Univ Nat Resources & Life Sci, Inst Geomatics, Vienna BOKU, Peter Jordan Str 82, A-1190 Vienna, Austria
simple connection;
semirigid connection;
shear tab;
machine learning;
SVM;
ANN;
random forest;
CatBoost;
XGboost;
SUPPORT VECTOR MACHINES;
STEEL STRUCTURES;
RANDOM FOREST;
BEHAVIOR;
DESIGN;
PREDICTION;
DEMAND;
D O I:
10.1002/stco.202400012
中图分类号:
TU [建筑科学];
学科分类号:
0813 ;
摘要:
This article presents an analytical study on the rigidity of shear tab connections, building on a previous study that developed 281 finite element models of varying geometry and size. The initial study proposed an equation to predict shear tab connection behavior based on geometric characteristics. This article further refines those predictions by assessing uncertainties using supervised machine learning (ML) models and proposing improved equations and methods. First, a simplified polynomial regression curve with enhanced statistical metrics is introduced. Additionally, support vector machine (SVM) with feature dimension reduction is used to predict the rigidity of shear tab connections. To identify the best regression model, three algorithms were tested: random forest (RF), XGBoost (XGB), and artificial neural network (ANN), with XGB achieving the lowest error. For classification, four algorithms - SVM, ANN, RF, and CatBoost (CB) - were employed to categorize shear tab behavior as either simple or semirigid. Among these, CB demonstrated the highest accuracy in classifying new test data based on numerical modeling results.
机构:
Illinois Inst Technol, Dept Civil Arch & Environ Engn, Chicago, IL 60616 USAIllinois Inst Technol, Dept Civil Arch & Environ Engn, Chicago, IL 60616 USA
Wen, Rou
Akbas, Bulent
论文数: 0引用数: 0
h-index: 0
机构:
Gebze Inst Technol, Dept Earthquake & Struct Engn, Gebze, TurkeyIllinois Inst Technol, Dept Civil Arch & Environ Engn, Chicago, IL 60616 USA
Akbas, Bulent
Shen, Jay
论文数: 0引用数: 0
h-index: 0
机构:
Illinois Inst Technol, Dept Civil Arch & Environ Engn, Chicago, IL 60616 USA
Iowa State Univ, Dept Civil Construct & Environ Engn, Ames, IA 50011 USAIllinois Inst Technol, Dept Civil Arch & Environ Engn, Chicago, IL 60616 USA