Structural alterations as a predictor of depression - a 7-Tesla MRI-based multidimensional approach

被引:0
|
作者
Schnellbaecher, Gereon J. [1 ,2 ]
Rajkumar, Ravichandran [1 ,2 ,3 ]
Veselinovic, Tanja [1 ,2 ]
Ramkiran, Shukti [1 ,2 ]
Hagen, Jana [1 ,2 ]
Collee, Maria [1 ,2 ]
Shah, N. Jon [2 ,3 ,4 ,5 ]
Neuner, Irene [1 ,2 ,3 ]
机构
[1] Rhein Westfal TH Aachen, Dept Psychiat Psychotherapy & Psychosomat, Aachen, Germany
[2] Forschungszentrum Julich, Inst Neurosci & Med 4, INM 4, Julich, Germany
[3] JARA BRAIN, Aachen, Germany
[4] Rhein Westfal TH Aachen, Dept Neurol, Aachen, Germany
[5] Forschungszentrum Julich, Inst Neurosci & Med 11, INM 11, Julich, Germany
关键词
SUPPORT VECTOR MACHINE; DEFAULT MODE; CEREBRAL-CORTEX; LOCAL GYRIFICATION; PREFRONTAL CORTEX; TEMPORAL CORTEX; BRAIN; DISORDER; DISEASE; EXERCISE;
D O I
10.1038/s41380-024-02854-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Major depressive disorder (MDD) is a debilitating condition that is associated with changes in the default-mode network (DMN). Commonly reported features include alterations in gray matter volume (GMV), cortical thickness (CoT), and gyrification. A comprehensive examination of these variables using ultra-high field strength MRI and machine learning methods may lead to novel insights into the pathophysiology of depression and help develop a more personalized therapy. Cerebral images were obtained from 41 patients with confirmed MDD and 41 healthy controls, matched for age and gender, using a 7-T-MRI. DMN parcellation followed the Schaefer 600 Atlas. Based on the results of a mixed-model repeated measures analysis, a support vector machine (SVM) calculation followed by leave-one-out cross-validation determined the predictive ability of structural features for the presence of MDD. A consecutive permutation procedure identified which areas contributed to the classification results. Correlating changes in those areas with BDI-II and AMDP scores added an explanatory aspect to this study. CoT did not delineate relevant changes in the mixed model and was excluded from further analysis. The SVM achieved a good prediction accuracy of 0.76 using gyrification data. GMV was not a viable predictor for disease presence, however, it correlated in the left parahippocampal gyrus with disease severity as measured by the BDI-II. Structural data of the DMN may therefore contain the necessary information to predict the presence of MDD. However, there may be inherent challenges with predicting disease course or treatment response due to high GMV variance and the static character of gyrification. Further improvements in data acquisition and analysis may help to overcome these difficulties.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Ultrasmall Superparamagnetic Iron Oxide Nanoparticle-Enhanced MRI at 7-Tesla in MS
    Schindler, Matthew K.
    Sati, Pascal
    van Gelderen, Peter
    De Zwart, Jacobus
    Dwyer, Jenifer
    Thomas, Chevaz
    Cortese, Irene
    Duyn, Jeff
    Reich, Daniel S.
    MULTIPLE SCLEROSIS JOURNAL, 2018, 24 : 69 - 69
  • [42] Structural connectivity of thalamic subnuclei in major depressive disorder: An ultra-high resolution diffusion MRI study at 7-Tesla
    Liu, Weijian
    Heij, Jurjen
    Liu, Shu
    Liebrand, Luka
    Caan, Matthan
    van der Zwaag, Wietske
    Veltman, Dick J.
    Lu, Lin
    Aghajani, Moji
    van Wingen, Guido
    JOURNAL OF AFFECTIVE DISORDERS, 2025, 370 : 412 - 426
  • [43] Structural connectivity of dopaminergic pathways in major depressive disorder: An ultra-high resolution 7-Tesla diffusion MRI study
    Liu, Weijian
    Heij, Jurjen
    Liu, Shu
    Liebrand, Luka
    Caan, Matthan
    van der Zwaag, Wietske
    Veltman, Dick J.
    Lu, Lin
    Aghajani, Moji
    van Wingen, Guido
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2024, 89 : 58 - 70
  • [44] Dorsal attention network and cognition in MS: a graph theoretical approach at 7-Tesla
    Russo, A. W.
    Tobyne, S. M.
    Patel, K. R.
    Machado, N. K.
    Klawiter, E. C.
    MULTIPLE SCLEROSIS JOURNAL, 2017, 23 : 546 - 546
  • [45] Ventral tegmental area integrity measured with high-resolution 7-Tesla MRI relates to motivation across depression and anxiety diagnoses
    Morris, Laurel S.
    Mehta, Marishka
    Ahn, Christopher
    Corniquel, Morgan
    Verma, Gaurav
    Delman, Bradley
    Hof, Patrick R.
    Jacob, Yael
    Balchandani, Priti
    Murrough, James W.
    NEUROIMAGE, 2022, 264
  • [46] Is 7-Tesla MRI necessary in the assessment of microstructural injury to visual pathways due to pituitary adenomas?
    Guo, Xiaopeng
    Yao, Shun
    Xing, Bing
    JOURNAL OF NEUROSURGERY, 2020, 132 (02) : 675 - 676
  • [47] A 7-Tesla MRI study of the periaqueductal gray: resting state and task activation under threat
    Weis, Carissa N.
    Bennett, Kenneth P.
    Huggins, Ashley A.
    Parisi, Elizabeth A.
    Gorka, Stephanie M.
    Larson, Christine
    SOCIAL COGNITIVE AND AFFECTIVE NEUROSCIENCE, 2022, 17 (02) : 187 - 197
  • [48] Quantitative MRI at 7-Tesla reveals novel frontocortical myeloarchitecture anomalies in major depressive disorder
    Heij, Jurjen
    van der Zwaag, Wietske
    Knapen, Tomas
    Caan, Matthan W. A.
    Forstman, Birte
    Veltman, Dick J.
    van Wingen, Guido
    Aghajani, Moji
    TRANSLATIONAL PSYCHIATRY, 2024, 14 (01):
  • [49] Reliability and safety of anaesthetic equipment around an high-field 7-Tesla MRI scanner
    Bridgen, Philippa
    Malik, Shaihan
    Wilkinson, Thomas
    Cronin, John N.
    Bhagat, Tahzeeb
    Hart, Nicholas
    Mc Corkell, Stuart
    Perkins, Joanne
    Tibby, Shane
    Hanna, Sara
    Kirwan, Richard
    Pauly, Thomas
    Weeks, Arthur
    Charles-Edwards, Geoff
    Padormo, Francesco
    Stell, David
    El-Boghdadly, Kariem
    Ourselin, Sebastien
    Giles, Sharon L.
    Edwards, Anthony D.
    V. Hajnal, Joseph
    Blaise, Benjamin J.
    BRITISH JOURNAL OF ANAESTHESIA, 2023, 130 (06) : E490 - E492
  • [50] Ultrasmall superparamagnetic iron oxide nanoparticle-enhanced MRI at 7-tesla in multiple sclerosis
    Schindler, M. K.
    Sati, P.
    van Gelderen, P.
    de Zwart, J. A.
    Dwyer, J.
    Thomas, C.
    Cortese, I.
    Duyn, J. H.
    Reich, D. S.
    MULTIPLE SCLEROSIS JOURNAL, 2017, 23 : 536 - 537