Frequentist inference for semi-mechanistic epidemic models with interventions

被引:0
|
作者
Bong, Heejong [1 ]
Ventura, Valerie [2 ,3 ]
Wasserman, Larry [2 ,3 ,4 ]
机构
[1] Univ Michigan, Dept Stat, 500 S State St, Ann Arbor, MI 48109 USA
[2] Carnegie Mellon Univ, Dept Stat & Data Sci, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Delphi Res Grp, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[4] Carnegie Mellon Univ, Machine Learning Dept, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
关键词
causal inference; empirical Bayes shrinkage; epidemic models; frequentist inference;
D O I
10.1093/jrsssb/qkae110
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The effect of public health interventions on an epidemic are often estimated by adding the intervention to epidemic models. During the Covid-19 epidemic, numerous papers used such methods for making scenario predictions. The majority of these papers use Bayesian methods to estimate the parameters of the model. In this article, we show how to use frequentist methods for estimating these effects which avoids having to specify prior distributions. We also use model-free shrinkage methods to improve estimation when there are many different geographic regions. This allows us to borrow strength from different regions while still getting confidence intervals with correct coverage and without having to specify a hierarchical model. Throughout, we focus on a semi-mechanistic model which provides a simple, tractable alternative to compartmental methods.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] A Semi-Mechanistic Model to Predict the Effects of Liver Cirrhosis on Drug Clearance
    Johnson, Trevor N.
    Boussery, Koen
    Rowland-Yeo, Karen
    Tucker, Geoffrey T.
    Rostami-Hodjegan, Amin
    CLINICAL PHARMACOKINETICS, 2010, 49 (03) : 189 - 206
  • [32] Climate and recruitment limitation of hosts: the dynamics of American cutaneous leishmaniasis seen through semi-mechanistic seasonal models
    Chaves, L. F.
    ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY, 2009, 103 (03): : 221 - 234
  • [33] Semi-mechanistic and black-box modeling of an enzymatic conversion process
    Braake, HABT
    van Can, EJL
    Babuska, R
    Verbruggen, HB
    ARTIFICIAL INTELLIGENCE IN REAL-TIME CONTROL 1997, 1998, : 373 - 378
  • [34] A Semi-Mechanistic Model to Predict the Effects of Liver Cirrhosis on Drug Clearance
    Trevor N. Johnson
    Koen Boussery
    Karen Rowland-Yeo
    Geoffrey T. Tucker
    Amin Rostami-Hodjegan
    Clinical Pharmacokinetics, 2010, 49 : 189 - 206
  • [35] A SEMI-MECHANISTIC MODEL OF THE POTENTIAL GROWTH AND YIELD OF BRUSSELS-SPROUTS
    HAMER, PJC
    JOURNAL OF HORTICULTURAL SCIENCE, 1992, 67 (02): : 161 - 169
  • [36] Semi-mechanistic pharmacokinetic-pharmacodynamic modelling of antibiotic drug combinations
    Brill, M. J. E.
    Kristoffersson, A. N.
    Zhao, C.
    Nielsen, E. I.
    Friberg, L. E.
    CLINICAL MICROBIOLOGY AND INFECTION, 2018, 24 (07) : 697 - 706
  • [37] Semi-mechanistic Bayesian modelling of COVID-19 with renewal processes
    Bhatt, Samir
    Ferguson, Neil
    Flaxman, Seth
    Gandy, Axel
    Mishra, Swapnil
    Scott, James A.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2023, 186 (04)
  • [38] A SEMI-MECHANISTIC MODEL FOR THE QUANTIFICATION OF STIMULATED GROWTH HORMONE SECRETION.
    van Esdonk, M. J.
    Stevens, J.
    van derGraaf, P. H.
    Burggraaf, J.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2019, 105 : S114 - S114
  • [39] Generalized semi-mechanistic model of impinging jet quenching heat transfer
    Modak, Mayank
    Sahu, Santosh K.
    Park, Hyun Sun
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 192
  • [40] Modelling Cellular Response to Ionizing Radiation: Mechanistic, Semi-Mechanistic, and Phenomenological Approaches - A Historical Perspective
    Taleei, Reza
    Rahmanian, Shirin
    Nikjoo, Hooshang
    RADIATION RESEARCH, 2024, 202 (02) : 143 - 160