Frequentist inference for semi-mechanistic epidemic models with interventions

被引:0
|
作者
Bong, Heejong [1 ]
Ventura, Valerie [2 ,3 ]
Wasserman, Larry [2 ,3 ,4 ]
机构
[1] Univ Michigan, Dept Stat, 500 S State St, Ann Arbor, MI 48109 USA
[2] Carnegie Mellon Univ, Dept Stat & Data Sci, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Delphi Res Grp, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[4] Carnegie Mellon Univ, Machine Learning Dept, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
关键词
causal inference; empirical Bayes shrinkage; epidemic models; frequentist inference;
D O I
10.1093/jrsssb/qkae110
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The effect of public health interventions on an epidemic are often estimated by adding the intervention to epidemic models. During the Covid-19 epidemic, numerous papers used such methods for making scenario predictions. The majority of these papers use Bayesian methods to estimate the parameters of the model. In this article, we show how to use frequentist methods for estimating these effects which avoids having to specify prior distributions. We also use model-free shrinkage methods to improve estimation when there are many different geographic regions. This allows us to borrow strength from different regions while still getting confidence intervals with correct coverage and without having to specify a hierarchical model. Throughout, we focus on a semi-mechanistic model which provides a simple, tractable alternative to compartmental methods.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Approximate Bayesian inference in semi-mechanistic models
    Andrej Aderhold
    Dirk Husmeier
    Marco Grzegorczyk
    Statistics and Computing, 2017, 27 : 1003 - 1040
  • [2] Approximate Bayesian inference in semi-mechanistic models
    Aderhold, Andrej
    Husmeier, Dirk
    Grzegorczyk, Marco
    STATISTICS AND COMPUTING, 2017, 27 (04) : 1003 - 1040
  • [3] Semi-mechanistic models for DRA-paclitaxel pharmacokinetics/pharmacodynamics.
    Sparreboom, A
    Xie, R
    Baker, SD
    Wolff, AC
    McIntire, GL
    Swindell, CS
    Karlson, MO
    CLINICAL CANCER RESEARCH, 2003, 9 (16) : 6198S - 6199S
  • [4] ON DEVELOPMENT OF A SEMI-MECHANISTIC WALL BOILING MODEL
    Das, Saurish
    Punekar, Hemant
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2013, VOL 8B, 2014,
  • [5] DECOMP - A semi-mechanistic model of litter decomposition
    Wallman, P
    Belyazid, S
    Svensson, MGE
    Sverdrup, H
    ENVIRONMENTAL MODELLING & SOFTWARE, 2006, 21 (01) : 33 - 44
  • [6] Comparing and linking machine learning and semi-mechanistic models for the predictability of endemic measles dynamics
    Lau, Max S. Y.
    Becker, Alex
    Madden, Wyatt
    Waller, Lance A.
    Metcalf, C. Jessica E.
    Grenfell, Bryan T.
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (09)
  • [7] Semi-Mechanistic Models of the Time Course of Neutrophils and Platelets in Cancer Patients Treated With Lurbinectedin
    Fernandez Teruel, C.
    Lubomirov, R.
    Fudio, S.
    JOURNAL OF THORACIC ONCOLOGY, 2021, 16 (03) : S508 - S509
  • [8] Semi-mechanistic modeling of chemical processes with neural networks
    Braake, HABT
    van Can, HJL
    Verbruggen, HB
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 1998, 11 (04) : 507 - 515
  • [9] Development of a semi-mechanistic allergenic pollen emission model
    Cai, Ting
    Zhang, Yong
    Ren, Xiang
    Bielory, Leonard
    Mi, Zhongyuan
    Nolte, Christopher G.
    Gao, Yang
    Leung, L. Ruby
    Georgopoulos, Panos G.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 653 : 947 - 957
  • [10] Bayesian and Frequentist Inference in Partially Identified Models
    Moon, Hyungsik Roger
    Schorfheide, Frank
    ECONOMETRICA, 2012, 80 (02) : 755 - 782