Learning and Embodied Decisions in Active Inference

被引:0
|
作者
Priorelli, Matteo [1 ]
Stoianov, Ivilin Peev [2 ]
Pezzulo, Giovanni [1 ]
机构
[1] Natl Res Council Italy, Inst Cognit Sci & Technol, Rome, Italy
[2] Natl Res Council Italy, Inst Cognit Sci & Technol, Padua, Italy
来源
ACTIVE INFERENCE, IWAI 2024 | 2025年 / 2193卷
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
active inference; hybrid models; embodied decisions; motor inference; motor learning; INFORMATION; MECHANISMS; MODEL;
D O I
10.1007/978-3-031-77138-5_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Biological organisms constantly face the necessity to act timely in dynamic environments and balance choice accuracy against the risk of missing valid opportunities. As formalized by embodied decision models, this might require brain architectures wherein decision-making and motor control interact reciprocally, in stark contrast to traditional models that view them as serial processes. Previous studies have assessed that embodied decision dynamics emerge naturally under active inference - a computational paradigm that considers action and perception as subject to the same imperative of free energy minimization. In particular, agents can infer their targets by using their own movements (and not only external sensations) as evidence, i.e., via self-evidencing. Such models have shown that under appropriate conditions, action-generated feedback can stabilize and improve decision processes. However, how adaptation of internal models to environmental contingencies influences embodied decisions is yet to be addressed. To shed light on this challenge, in this study we systematically investigate the learning dynamics of an embodied model of decision-making during a two-alternative forced choice task, using a hybrid (discrete and continuous) active inference framework. Our results show that active inference agents can adapt to embodied contexts by learning various statistical regularities of the task - namely, prior preferences for the correct target, cue validity, and response strategies that prioritize faster or slower (but more accurate) decisions. Crucially, these results illustrate the efficacy of learning discrete preferences and strategies using sensorimotor feedback from continuous dynamics.
引用
收藏
页码:72 / 87
页数:16
相关论文
共 50 条
  • [21] On Predictive Planning and Counterfactual Learning in Active Inference
    Paul, Aswin
    Isomura, Takuya
    Razi, Adeel
    ENTROPY, 2024, 26 (06)
  • [22] An Invariant Inference Framework by Active Learning and SVMs
    Li Jiaying
    2015 20TH INTERNATIONAL CONFERENCE ON ENGINEERING OF COMPLEX COMPUTER SYSTEMS (ICECCS), 2015, : 218 - 221
  • [23] LEARNING PERCEPTION AND PLANNING WITH DEEP ACTIVE INFERENCE
    Catal, Ozan
    Verbelen, Tim
    Nauta, Johannes
    De Boom, Cedric
    Dhoedt, Bart
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 3952 - 3956
  • [24] EMBODIED ACTIVE LEARNING OF RELATIONAL STATE ABSTRACTIONS FOR BILEVEL PLANNING
    Li, Amber
    Silver, Tom
    CONFERENCE ON LIFELONG LEARNING AGENTS, VOL 232, 2023, 232 : 358 - 375
  • [25] Interoceptive inference, emotion, and the embodied self
    Seth, Anil K.
    TRENDS IN COGNITIVE SCIENCES, 2013, 17 (11) : 565 - 573
  • [26] The Active Inference Approach to Ecological Perception: General Inforation Dynamics for Natural and Artifical Embodied Cognition
    Linson, Adam
    Clark, Andy
    Ramamoorthy, Subramanian
    Friston, Karl
    FRONTIERS IN ROBOTICS AND AI, 2018, 5
  • [27] Active Learning for Inference and Regeneration of Applications that Access Databases
    Shen, Jiasi
    Rinard, Martin C.
    ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 2021, 42 (04):
  • [28] Active Inference Integrated With Imitation Learning for Autonomous Driving
    Nozari, Sheida
    Krayani, Ali
    Marin-Plaza, Pablo
    Marcenaro, Lucio
    Gomez, David Martin
    Regazzoni, Carlo
    IEEE ACCESS, 2022, 10 : 49738 - 49756
  • [29] Active Learning and Inference Method for Within Network Classification
    Kajdanowicz, Tomasz
    Michalski, Radoslaw
    Musial, Katarzyna
    Kazienko, Przemyslaw
    2013 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2013, : 1299 - 1306
  • [30] Learning Generative State Space Models for Active Inference
    Catal, Ozan
    Wauthier, Samuel
    De Boom, Cedric
    Verbelen, Tim
    Dhoedt, Bart
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14