DyGait: Gait Recognition Network Based on Skeleton Dynamic Features

被引:0
|
作者
Wei, Siwei [1 ,2 ]
Chen, Zhenglin [1 ]
Wei, Feifei [3 ]
Yang, Shiyu Zhou [4 ]
Wang, Chunzhi [1 ]
机构
[1] Hubei Univ Technol, Sch Comp Sci, Wuhan 430068, Peoples R China
[2] CCCC Second Highway Consultants Co Ltd, Wuhan 430056, Peoples R China
[3] Hubei Univ Econ, Sch Informat Management, Wuhan 430070, Peoples R China
[4] Wuhan East Sun Technol Co Ltd, Wuhan 423000, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Gait recognition; Skeleton; Dynamics; Feature extraction; Indexes; Data mining; Training; Information retrieval; dynamic information extraction; graph convolution; indoor/outdoor scenarios; skeleton structures; ATTENTION; SCHEME;
D O I
10.1109/ACCESS.2024.3416433
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the field of gait recognition, research mainly revolves around binary silhouette and skeleton structures based on joint points. While existing gait recognition network models have shown promising results in simple indoor environments, they still encounter substantial challenges in complex outdoor settings. Currently, most methods employ a simplistic approach to extract dynamic information, typically by subtracting adjacent frames. However, we believe this method oversimplifies the process and fails to effectively capture essential dynamic features.To address this limitation, we propose a novel method called DyGait,a gait recognition network based on skeleton dynamic features. Before conducting feature extraction, we introduce a dynamic feature streaming technique to establish associations between long-term dynamic information, as illustrated in Figure 1. Furthermore, we enhance feature extraction by incorporating motion captors to better capture global motion changes.In our experiments, we comprehensively compare DyGait with various current gait recognition methods across multiple public datasets. The results demonstrate that DyGait consistently outperforms other methods, irrespective of indoor or outdoor scenarios.
引用
收藏
页码:189535 / 189546
页数:12
相关论文
共 50 条
  • [31] Robust gait recognition using hybrid descriptors based on Skeleton Gait Energy Image
    Yao, Lingxiang
    Kusakunniran, Worapan
    Wu, Qiang
    Zhang, Jian
    Tang, Zhenmin
    Yang, Wankou
    PATTERN RECOGNITION LETTERS, 2021, 150 : 289 - 296
  • [32] A Strong and Robust Skeleton-Based Gait Recognition Method with Gait Periodicity Priors
    Li, Na
    Zhao, Xinbo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 3046 - 3058
  • [33] Gait Recognition Using Skeleton Data
    Prathap, C.
    Sakkara, Sumanth
    2015 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2015, : 2302 - 2306
  • [34] Gesture recognition matching based on dynamic skeleton
    Wang Jingyao
    Yu Naigong
    Firdaous, Essaf
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1680 - 1685
  • [35] Human gait recognition based on Haralick features
    Lishani, Ait O.
    Boubchir, Larbi
    Khalifa, Emad
    Bouridane, Ahmed
    SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (06) : 1123 - 1130
  • [36] Human gait recognition based on Haralick features
    Ait O. Lishani
    Larbi Boubchir
    Emad Khalifa
    Ahmed Bouridane
    Signal, Image and Video Processing, 2017, 11 : 1123 - 1130
  • [37] An Efficient Graph Convolution Network for Skeleton-Based Dynamic Hand Gesture Recognition
    Peng, Sheng-Hui
    Tsai, Pei-Hsuan
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2023, 15 (04) : 2179 - 2189
  • [38] Dynamic Edge Convolutional Neural Network for Skeleton-Based Human Action Recognition
    Tasnim, Nusrat
    Baek, Joong-Hwan
    SENSORS, 2023, 23 (02)
  • [39] Fusion of dynamic and static features for gait recognition over time
    Veres, GV
    Nixon, MS
    Middleton, L
    Carter, JN
    2005 7TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), VOLS 1 AND 2, 2005, : 1204 - 1210
  • [40] Abnormal Gait Recognition based on Integrated Gait Features in Machine Learning
    Kim, Wonjin
    Kim, Yanggon
    2021 IEEE 45TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2021), 2021, : 1683 - 1688