Effects of dietary protein levels with cottonseed protein concentrate inclusion on growth, feed utilization, liver health and intestinal microbiota of juvenile largemouth bass (Micropterus salmoides)

被引:1
|
作者
Chen, Wen [1 ,2 ]
Han, Dong [1 ,2 ,3 ,4 ]
Yang, Yunxia [1 ]
Zhang, Zhimin [1 ]
Jin, Junyan [1 ,2 ,3 ,4 ]
Liu, Haokun [1 ,2 ,3 ,4 ]
Zhu, Xiaoming [1 ,3 ]
Xie, Shouqi [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, State Key Lab Freshwater Ecol & Biotechnol, Inst Hydrobiol, Wuhan 430072, Peoples R China
[2] Univ Chinese Acad Sci, Coll Adv Agr Sci, Beijing 100049, Peoples R China
[3] Hubei Engn Res Ctr Aquat Anim Nutr & Feed, Wuhan 430072, Peoples R China
[4] Chinese Acad Sci, Key Lab Breeding Biotechnol & Sustainable Aquacult, Wuhan 430072, Peoples R China
关键词
Largemouth bass ( Micropterus salmoides ); Cottonseed protein concentrate; Growth; Dietary protein level; FISH-MEAL; BODY-COMPOSITION; MOLECULAR-MECHANISMS; GENE-EXPRESSION; REPLACEMENT; SHRIMP; REQUIREMENTS; MICROFLORA; NUTRIENT; INDEXES;
D O I
10.1016/j.aqrep.2024.102461
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
An 8-weeks growth trial was conducted to evaluate the effects of dietary protein levels mainly based on cottonseed protein concentrate (CPC) meal on growth performance, protein metabolism, liver health and intestinal microbiota of largemouth bass (Micropterus salmoides) juveniles. Five isolipidic (100 g/kg) diets were prepared with protein levels ranging from 400 to 560 g/kg, with CPC of 155 g/kg, 214 g/kg, 272 g/kg, 330 g/kg, 390 g/kg to obtain five experimental diets with gradient protein levels (399.9 g/kg, 428.0 g/kg, 462.8 g/kg, 503.5 g/kg and 541.5 g/kg, respectively (CPC1, CPC2, CPC3, CPC4 and CPC5)). 300 fish (initial body weight: 14.71 +/- 0.50 g) were randomly assigned into 15 tanks (3 tanks per diet). The results showed that, the fish of CPC5 group had the highest specific growth rate (SGR), weight gain (WG) and feed efficiency (FE) (P < 0.05). Increased dietary protein up-regulated most liver key genes of mTOR pathway (akt, tor, s6k, 4ebp1, s6) while down-regulated atf4 at medium dietary protein (P < 0.05). The expression of fas was down-regulated with increased dietary protein, while dgat1 was higher at CPC5 group (P < 0.05). The genes related to lipolysis were up-regulated with increased dietary protein (P < 0.05). The key genes of apoptosis including bcl2, casp9, casp3 (apoptosis) oxidative stress and endoplasmic reticulum stress were significantly up-regulated at high dietary protein (P < 0.05), which reduced the antioxidant and anti-stress capacity of the liver. Dietary 462.8 g/kg protein could maintain the normal composition and metabolic function of intestinal microbiota. In summary, dietary protein requirement using CPC as main protein source was estimated to be 463 g/kg to 510 g/kg for liver health or best growth of largemouth bass juveniles.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Effects of cottonseed protein concentrate on growth performance, hepatic function and intestinal health in juvenile largemouth bass, Micropterus salmoides
    He, Guanglun
    Zhang, Tingting
    Zhou, Xinmei
    Liu, Xinping
    Sun, Hao
    Chen, Yongjun
    Tan, Beiping
    Lin, Shimei
    AQUACULTURE REPORTS, 2022, 23
  • [2] Effects of Replacement of Dietary Fishmeal by Cottonseed Protein Concentrate on Growth Performance, Liver Health, and Intestinal Histology of Largemouth Bass (Micropterus salmoides)
    Liu, Yulong
    Lu, Qisheng
    Xi, Longwei
    Gong, Yulong
    Su, Jingzhi
    Han, Dong
    Zhang, Zhimin
    Liu, Haokun
    Jin, Junyan
    Yang, Yunxia
    Zhu, Xiaoming
    Xie, Shouqi
    FRONTIERS IN PHYSIOLOGY, 2021, 12
  • [3] Effects of dietary protein and lipid levels on the growth performance, feed utilization, and liver histology of largemouth bass (Micropterus salmoides)
    Li, Xinyu
    Zheng, Shixuan
    Ma, Xuekun
    Cheng, Kaimin
    Wu, Guoyao
    AMINO ACIDS, 2020, 52 (6-7) : 1043 - 1061
  • [4] Effects of dietary protein and lipid levels on the growth performance, feed utilization, and liver histology of largemouth bass (Micropterus salmoides)
    Xinyu Li
    Shixuan Zheng
    Xuekun Ma
    Kaimin Cheng
    Guoyao Wu
    Amino Acids, 2020, 52 : 1043 - 1061
  • [5] Effects of Dietary Inclusion of Clostridium autoethanogenum Protein on the Growth Performance and Liver Health of Largemouth Bass (Micropterus salmoides)
    Lu, Qisheng
    Xi, Longwei
    Liu, Yulong
    Gong, Yulong
    Su, Jingzhi
    Han, Dong
    Yang, Yunxia
    Jin, Junyan
    Liu, Haokun
    Zhu, Xiaoming
    Xie, Shouqi
    FRONTIERS IN MARINE SCIENCE, 2021, 8
  • [6] Dietary synbiotics improved the growth, feed utilization and intestinal structure of largemouth bass (Micropterus salmoides) juvenile
    Yang, Pinxian
    Yang, Weining
    He, Ming
    Li, Xiaoqin
    Leng, Xiang-Jun
    AQUACULTURE NUTRITION, 2020, 26 (02) : 590 - 600
  • [7] Effects of Enzymatic Cottonseed Protein Concentrate as a Feed Protein Source on the Growth, Plasma Parameters, Liver Antioxidant Capacity and Immune Status of Largemouth Bass (Micropterus salmoides)
    Zhang, Qile
    Liang, Hualiang
    Xu, Pao
    Xu, Gangchun
    Zhang, Lu
    Wang, Yongli
    Ren, Mingchun
    Chen, Xiaoru
    METABOLITES, 2022, 12 (12)
  • [8] Dietary Protein and Lipid Requirements for Juvenile Largemouth Bass, Micropterus salmoides
    Huang, Di
    Wu, Yubo
    Lin, Yayun
    Chen, Jianming
    Karrow, Niel
    Ren, Xing
    Wang, Yan
    JOURNAL OF THE WORLD AQUACULTURE SOCIETY, 2017, 48 (05) : 782 - 790
  • [9] Condensed tannin improves growth and alleviates intestinal inflammation of juvenile largemouth bass (Micropterus salmoides) fed with high cottonseed protein concentrate diet
    Yang, Manqi
    Jiang, Dahai
    Lai, Weibin
    Chen, Kai
    Xu, Shuwen
    Yu, Ran
    Li, Linyi
    Zhang, Liangliang
    Lu, Liming
    Xu, Yong
    Liu, Yiwen
    Jiang, Jianchun
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 280
  • [10] Effects of dietary starch and lipid levels on the protein retention and growth of largemouth bass (Micropterus salmoides)
    Li, Xinyu
    Zheng, Shixuan
    Ma, Xuekun
    Cheng, Kaimin
    Wu, Guoyao
    AMINO ACIDS, 2020, 52 (6-7) : 999 - 1016