QUANTIZATION OF SEMISIMPLE REAL LIE GROUPS

被引:0
|
作者
DE Commer, Kenny [1 ]
机构
[1] Vrije Univ Brussel, Dept Math & Data Sci, Pl Laan 2, B-1050 Brussels, Belgium
来源
ARCHIVUM MATHEMATICUM | 2024年 / 60卷 / 05期
关键词
quantum groups; real forms; quantized enveloping algebras; Harish-Chandra modules; ZONAL SPHERICAL-FUNCTIONS; QUANTUM; ALGEBRAS; POLYNOMIALS; DUALITY; MODULES; SPACES; ANALOG;
D O I
10.5817/AM2024-5-285
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a novel construction of quantized universal enveloping *-algebras of real semisimple Lie algebras, based on Letzter's theory of quantum symmetric pairs. We show that these structures can be 'integrated', leading to a quantization of the group C*-algebra of an arbitrary semisimple algebraic real Lie group.
引用
收藏
页码:285 / 310
页数:26
相关论文
共 50 条