Using Brain-Computer Interface and Artificial Intelligence Algorithms for Language Learning

被引:0
|
作者
Kuchciak, Marta [1 ]
Sieradzki, Macin [1 ]
Cebula, Wojciech [1 ]
Bialas, Katarzyna [1 ]
Kedziora, Michal [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Wroclaw, Poland
关键词
BCI; AI; Neural Network; EEG;
D O I
10.1007/978-3-031-70248-8_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The research paper aims to introduce a methodology and platform that integrates a brain computer interface (BCI) and artificial intelligence (AI) to improve the process of learning a foreign language. Through the use of a BCI, our solution can accurately gauge the bioelectrical activity of the user's brain to determine whether the user has learned a piece of knowledge, allowing for a more personalized and efficient learning experience. The application's AI model, trained via back-propagation through time (BPTT) to handle temporal dependencies in the data, was optimized using the Huber loss function and the "Adam" optimizer, though it faced challenges of overtraining due to limited data. In this paper, we present a novel approach that leverages the synergy between BCIs and AI to offer a more effective and personalized language learning experience. We detail the process, from the initial design to the deployment of the platform, including the creation of a custom AI model trained on brainwave data. Our proposed data collection and cleanup process was also presented.
引用
收藏
页码:334 / 343
页数:10
相关论文
共 50 条
  • [41] Implementation of genetic algorithms to feature selection for the use of brain-computer interface
    Kolodziej, Marcin
    Majkowski, Andrzej
    Rak, Remigiusz
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (05): : 71 - 76
  • [42] Editorial: Artificial intelligence in brain-computer interfaces and neuroimaging for neuromodulation and neurofeedback
    Ponce, Hiram
    Martinez-Villasenor, Lourdes
    Chen, Yinong
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [43] Brain-Computer Interface Review
    Bularka, Szilrd
    Gontean, Aurel
    2016 12TH IEEE INTERNATIONAL SYMPOSIUM ON ELECTRONICS AND TELECOMMUNICATIONS (ISETC'16), 2016, : 219 - 222
  • [44] Noninvasive brain-computer interface
    Roitberg, B
    SURGICAL NEUROLOGY, 2005, 63 (03): : 195 - 195
  • [45] Classification algorithms of error-related potentials in brain-computer interface
    Sun J.
    Jung T.-P.
    Xiao X.
    Meng J.
    Xu M.
    Ming D.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2021, 38 (03): : 463 - 472
  • [46] Classification algorithms analysis for brain-computer interface in drug craving therapy
    Mazzoleni, Mirko
    Previdi, Fabio
    Bonfiglio, Natale Salvatore
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 52 : 463 - 472
  • [47] The Berlin Brain-Computer Interface
    Blankertz, Benjamin
    Tangermann, Michael
    Popescu, Florin
    Krauledat, Matthias
    Fazli, Siamac
    Donaczy, Marton
    Curio, Gabriel
    Mueller, Klaus Robert
    COMPUTATIONAL INTELLIGENCE: RESEARCH FRONTIERS, 2008, 5050 : 79 - +
  • [48] A public data hub for benchmarking common brain-computer interface algorithms
    Zander, Thorsten O.
    Ihme, Klas
    Gaertner, Matti
    Roetting, Matthias
    JOURNAL OF NEURAL ENGINEERING, 2011, 8 (02)
  • [49] P300-Based Brain-Computer Interface Channel Selection using Swarm Intelligence
    Martinez-Cagigal, V.
    Hornero, R.
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2017, 14 (04): : 372 - 383
  • [50] A brain-computer typing interface using finger movements
    Shah, Nishal P.
    Willsey, Matthew S.
    Hahn, Nick
    Kamdar, Foram
    Avansino, Donald T.
    Hochberg, Leigh R.
    Shenoy, Krishna V.
    Henderson, Jaimie M.
    2023 11TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, NER, 2023,