Creep mechanisms and microstructural evidence of nanocrystalline CoCrFeMnNi

被引:0
|
作者
Luo, Man [1 ,2 ]
Li, Haitao [1 ,2 ]
Song, Shangwei [1 ,2 ]
Xiang, Henggao [3 ]
Peng, Xianghe [1 ,2 ]
机构
[1] Chongqing Univ, State Key Lab Coal Mine Disaster Dynam & Control, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Coll Aerosp Engn, Chongqing 400044, Peoples R China
[3] Nanjing Univ Sci & Technol, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Molecular dynamics simulations; High-entropy alloy; Creep; Microstructural evolution; Nanocrystalline; STEADY-STATE CREEP; HIGH-ENTROPY ALLOY; DEFORMATION; BEHAVIOR; METALS; MODEL; SIZE;
D O I
10.1016/j.physb.2025.416940
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Creep property is an important mechanical parameter for the application of high-entropy alloys at high temperatures. In this work, the creep behavior of nanocrystalline CoCrFeMnNi was investigated using molecular dynamics simulations. The effects of temperature, stress and grain size on creep properties were discussed, and the microstructural evolution and deformation mechanisms were analyzed. The creep activation energy and diffusion activation energy were compared based on thermodynamics theory to further understand the creep mechanisms. The results showed that the creep mechanism is diffusion creep at low temperature and low stress. With the increase of temperature and stress, the creep mechanism changes to grain boundary slip or even dislocation motion. Grain size also affects the creep behavior. Finally, the creep properties of the high entropy alloy were compared with that of Ni, and it was found that the creep resistance of the high entropy alloy is better than that of Ni.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Review of the Microstructural Impact on Creep Mechanisms and Performance for Laser Powder Bed Fusion Inconel 718
    Bryndza, Guillian
    Tchuindjang, Jerome Tchoufang
    Chen, Fan
    Habraken, Anne Marie
    Sepulveda, Hector
    Tuninetti, Victor
    Mertens, Anne
    Duchene, Laurent
    MATERIALS, 2025, 18 (02)
  • [32] Microstructural threshold events coupled with internal stress evolution: Controlling creep mechanisms in advanced materials
    Eggeler, G
    Earthman, JC
    CREEP BEHAVIOR OF ADVANCED MATERIALS FOR THE 21ST CENTURY, 1999, : 255 - 265
  • [33] MICROSTRUCTURAL EVIDENCE ON REACTION-MECHANISMS OF DECARBONATION REACTIONS IN SILICEOUS DOLOMITES
    MASCH, L
    HEUSSASSBICHLER, S
    FORTSCHRITTE DER MINERALOGIE, 1983, 61 (01): : 144 - 144
  • [34] An analysis of creep deformation in nanocrystalline materials
    Chokshi, AH
    SCRIPTA MATERIALIA, 1996, 34 (12) : 1905 - 1910
  • [35] Deformation and coble creep of nanocrystalline materials
    Pande, CS
    Masumura, RA
    NANOMATERIALS FOR STRUCTURAL APPLICATIONS, 2003, 740 : 3 - 14
  • [36] Mechanics of creep resistance in nanocrystalline solids
    P. Barai
    George J. Weng
    Acta Mechanica, 2008, 195 : 327 - 348
  • [37] Nature of creep deformation in nanocrystalline Tungsten
    Saha, Sourav
    Motalab, Mohammad
    COMPUTATIONAL MATERIALS SCIENCE, 2018, 149 : 360 - 372
  • [38] Microstructural evolution in nanocrystalline Ni coatings
    Lau, ML
    He, J
    Melmed, AJ
    Lusby, TA
    Schweinfest, R
    Rühle, M
    Lavernia, EJ
    JOURNAL OF MATERIALS RESEARCH, 2002, 17 (05) : 1041 - 1049
  • [39] Microstructural Evolution in Nanocrystalline Ni Coatings
    M. L. Lau
    J. He
    A. J. Melmed
    T. A. Lusby
    R. Schweinfest
    M. Rühle
    E. J. Lavernia
    Journal of Materials Research, 2002, 17 : 1041 - 1049
  • [40] A microstructural study of superconductive nanocrystalline diamond
    Villar, M. P.
    Alegre, Ma. P.
    Araujo, D.
    Bustarret, E.
    Achatz, P.
    Saminadayar, L.
    Bauerle, C.
    Williams, O. A.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2009, 206 (09): : 1986 - 1990