Deep Learning-based Texture Feature Extraction Technique for Face Annotation

被引:0
|
作者
Kasthuri, A. [1 ]
Suruliandi, A. [2 ]
Poongothai, E. [3 ]
Raja, S. P. [4 ]
机构
[1] Arulmigu Subramania Swamy Arts & Sci Coll, Dept Comp Sci, Thoothukudi 628907, Tamilnadu, India
[2] Manonmaniam Sundaranar Univ, Dept Comp Sci & Engn, Tirunelveli 627012, India
[3] SRM Inst Sci & Technol, Sch Comp, Dept Computat Intelligence, Chennai, India
[4] Vellore Inst Technol, Sch Comp Sci & Engn, Vellore, Tamil Nadu, India
关键词
CNN; deep learning; texture feature; face annotation; online networks; labeling;
D O I
10.1142/S0218001425320015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Face annotation plays a crucial role in the field of computer vision. Its purpose is to accurately label the faces that appear in an image. The effectiveness of face annotation relies heavily on the representation of facial features, such as color, texture, and shape. Deep texture features, in particular, play a significant role in face annotation systems. It is worth noting that different individuals can possess similar texture features, which can impact the performance of annotation. Therefore, this study addresses the enduring complexity of face similarity by introducing an innovative approach called the Deep Learning-based Texture Feature (DLTF) through the utilization of the efficient deep learning model known as the Residual Network (ResNet). Despite the variations in poses, lighting, expressions, and occlusions that can greatly alter faces, ResNet's deep architecture and feature retention capabilities make it resilient to these changes, ensuring consistent and accurate annotations under diverse conditions. Experimental results obtained from the IMFDB, LFW, and Yahoo datasets demonstrate that the proposed DLTF is the most effective description of deep texture features, leading to improved face naming performance. Furthermore, the proposed DLTF enhances the efficiency of the face-naming task by effectively addressing real-life challenges.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Machine learning-based lung and colon cancer detection using deep feature extraction and ensemble learning
    Talukder, Md Alamin
    Islam, Md Manowarul
    Uddin, Md Ashraf
    Akhter, Arnisha
    Hasan, Khondokar Fida
    Moni, Mohammad Ali
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 205
  • [32] Recognition of Conus species using a combined approach of supervised learning and deep learning-based feature extraction
    Qasmi, Noshaba
    Bibi, Rimsha
    Rashid, Sajid
    PLOS ONE, 2024, 19 (12):
  • [33] A Novel Counterfeit Feature Extraction Technique for Exposing Face-Swap Images Based on Deep Learning and Error Level Analysis
    Zhang, Weiguo
    Zhao, Chenggang
    Li, Yuxing
    ENTROPY, 2020, 22 (02)
  • [34] Learning Feature Fusion in Deep Learning-Based Object Detector
    Hassan, Ehtesham
    Khalil, Yasser
    Ahmad, Imtiaz
    JOURNAL OF ENGINEERING, 2020, 2020
  • [35] Optimized feature extraction for learning-based image steganalysis
    Wang, Ying
    Moulin, Pierre
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2007, 2 (01) : 31 - 45
  • [36] Improving Face Image Extraction by Using Deep Learning Technique
    Xue, Zhiyun
    Antani, Sameer
    Long, L. Rodney
    Demner-Fushman, Dina
    Thoma, George R.
    MEDICAL IMAGING 2016: PACS AND IMAGING INFORMATICS: NEXT GENERATION AND INNOVATIONS, 2016, 9789
  • [37] A Review on Deep Learning-based Face Recognition Techniques
    Padma Suresh, L.
    Anil, J.
    2023 Innovations in Power and Advanced Computing Technologies, i-PACT 2023, 2023,
  • [38] Deep learning-based face detection and recognition on drones
    Rostami M.
    Farajollahi A.
    Parvin H.
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (01) : 373 - 387
  • [39] Deep learning based intelligent system for robust face spoofing detection using texture feature measurement
    Jaswanth P.
    chowdary P.Y.
    Ramprasad M.V.S.
    Measurement: Sensors, 2023, 29
  • [40] IDDLE: A Novel Deep Learning-Based Approach for Intrusion Detection Problem Using Feature Extraction
    Goktepe, Yunus Emre
    Uzun, Yusuf
    SECURITY AND PRIVACY, 2025, 8 (01):