Geometrical solutions for aerodynamic limitations comprise a major development towards improving the wind energy capture efficiency and aerodynamic performance of wind turbines. However, the implementation of some mechanisms such as considerably thin airfoils have been a hurdle due to the available manufacturing methods and cost effectiveness. Moreover, the analysis has been mostly focused on analyzing and optimizing the aerodynamic aspect of wind turbines, independently of the structural performance necessary to support the optimized aerodynamic performance. Therefore, this paper analyzes the fluid-structure interaction (FSI) of a wind turbine with a relatively thin airfoil section using computational fluid dynamics (CFD) and finite element analysis (FEA) to evaluate the total displacement as well as the stresses acting on the blade as the results of the aerodynamic pressure distribution. Using the structural design, geometrical scales, and material properties of baseline model, the structural performance reflected by the thin airfoil design is isolated. Not only did the thin airfoil reduce the volume of the material and, therefore, the weight of the modified blade, but it was also able to provide high rigidity, which is necessary to support better aerodynamic performance. This was found to be influenced by the structural shape of the turbine blade, resulting in a maximum total deformation of less than 5.9 x 10-7 m, which is very negligible in comparison to the scale of the turbine blade in this analysis.