Structural Feasibility of a Wind Turbine Blade Inspired by an Owl Airfoil

被引:0
|
作者
Sesalim, Dean [1 ]
Naser, Jamal [1 ]
机构
[1] Swinburne Univ Technol, Dept Mech & Prod Design Engn, Hawthorn, Vic 3122, Australia
关键词
wind turbine performance; fluid-structure interaction; wind turbine simulation; FLUID-STRUCTURE INTERACTION;
D O I
10.3390/en18051288
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Geometrical solutions for aerodynamic limitations comprise a major development towards improving the wind energy capture efficiency and aerodynamic performance of wind turbines. However, the implementation of some mechanisms such as considerably thin airfoils have been a hurdle due to the available manufacturing methods and cost effectiveness. Moreover, the analysis has been mostly focused on analyzing and optimizing the aerodynamic aspect of wind turbines, independently of the structural performance necessary to support the optimized aerodynamic performance. Therefore, this paper analyzes the fluid-structure interaction (FSI) of a wind turbine with a relatively thin airfoil section using computational fluid dynamics (CFD) and finite element analysis (FEA) to evaluate the total displacement as well as the stresses acting on the blade as the results of the aerodynamic pressure distribution. Using the structural design, geometrical scales, and material properties of baseline model, the structural performance reflected by the thin airfoil design is isolated. Not only did the thin airfoil reduce the volume of the material and, therefore, the weight of the modified blade, but it was also able to provide high rigidity, which is necessary to support better aerodynamic performance. This was found to be influenced by the structural shape of the turbine blade, resulting in a maximum total deformation of less than 5.9 x 10-7 m, which is very negligible in comparison to the scale of the turbine blade in this analysis.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Structural Analysis and Design of the Composite Wind Turbine Blade
    Wu, Wen-Hsiang
    Young, Wen-Bin
    APPLIED COMPOSITE MATERIALS, 2012, 19 (3-4) : 247 - 257
  • [32] Structural design and analysis of a redesigned wind turbine blade
    Agarwala, Ranjeet
    Chin, Robert A.
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2020, 43 (01) : 1895 - 1901
  • [33] Structural design and analysis of large wind turbine blade
    Bae, Sung-Youl
    Kim, Yun-Hae
    MODERN PHYSICS LETTERS B, 2019, 33 (14-15):
  • [34] Structural optimization study of composite wind turbine blade
    Chen, Jin
    Wang, Quan
    Shen, Wen Zhong
    Pang, Xiaoping
    Li, Songlin
    Guo, Xiaofeng
    MATERIALS & DESIGN, 2013, 46 : 247 - 255
  • [35] Structural design of offshore wind turbine blade spars
    Boudounit, Hicham
    Tarfaoui, Mostapha
    Saifaoui, Dennoun
    El Garouge, Salwa
    WIND ENGINEERING, 2022, 46 (02) : 343 - 360
  • [36] Structural analysis of horizontal axis wind turbine blade
    Tenguria, Nitin
    Mittal, N. D.
    Ahmed, Siraj
    WIND AND STRUCTURES, 2013, 16 (03) : 241 - 248
  • [37] Structural analysis of horizontal axis wind turbine blade
    Tenguria, Nitin
    Mittal, N.D.
    Ahmed, Siraj
    Wind and Structures, An International Journal, 2013, 16 (03): : 241 - 248
  • [38] Whale Inspired Tubercles for Passively Enhancing the Performance of a Wind Turbine Blade
    Supreeth, R.
    Maharana, S. K.
    Bhaskar, K.
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2023, 13 (01): : 489 - 503
  • [39] Prediction of delamination in wind turbine blade structural details
    Mandell, JF
    Cairns, DS
    Samborsky, DD
    Morehead, RB
    Haugen, DJ
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2003, 125 (04): : 522 - 530
  • [40] Structural Analysis and Design of the Composite Wind Turbine Blade
    Wen-Hsiang Wu
    Wen-Bin Young
    Applied Composite Materials, 2012, 19 : 247 - 257