Internal Integrated Temperature Sensor for Lithium-Ion Batteries

被引:0
|
作者
Yang, Pengfei [1 ,2 ]
Su, Kai [1 ]
Weng, Shijie [1 ]
Han, Jiang [1 ]
Zhang, Qian [1 ]
Li, Zhiqiang [3 ]
Peng, Xiaoli [1 ,4 ]
Xiang, Yong [1 ,4 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu 611731, Peoples R China
[2] Zhuhai China Eagle Elect Circuit Co Ltd, Zhuhai 519000, Peoples R China
[3] Zhuhai Henger Microelect Equipment Co Ltd, 6 Jinyuan First Rd, Zhuhai 519085, Peoples R China
[4] Frontier Ctr Energy Distribut & Integrat, Tianfu Jiangxi Lab, Huoju Ave, Chengdu 641419, Peoples R China
关键词
internal integrated; flexible printed circuit; temperature sensor; lithium-ion battery; THERMAL RUNAWAY; MICROSENSOR; VOLTAGE;
D O I
10.3390/s25020511
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Lithium-ion batteries represent a significant component of the field of energy storage, with a diverse range of applications in consumer electronics, portable devices, and numerous other fields. In view of the growing concerns about the safety of batteries, it is of the utmost importance to develop a sensor that is capable of accurately monitoring the internal temperature of lithium-ion batteries. External sensors are subject to the necessity for additional space and ancillary equipment. Moreover, external sensors cannot accurately measure internal battery temperature due to packaging material interference, causing a temperature discrepancy between the interior and surface. Consequently, this study presents an integrated temperature sensor within the battery, based on PT1000 resistance temperature detector (RTD). The sensor is integrated with the anode via a flexible printed circuit (FPC), simplifying the assembly process. The PT1000 RTD microsensor's temperature is linearly related to resistance (R = 3.71T + 1003.86). It measures about 15 degrees C temperature difference inside/outside the battery. On short-circuit, the battery's internal temperature rises to 27 degrees C in 10 s and 32 degrees C in 20 s, measured by the sensor. A battery with the PT1000 sensor retains 89.8% capacity under 2 C, similar to the normal battery. Furthermore, a PT1000 temperature array sensor was designed and employed to enable precise monitoring and localization of internal temperature variations.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Operando Ultrasonic Monitoring of the Internal Temperature of Lithium-ion Batteries for the Detection and Prevention of Thermal Runaway
    Owen, Rhodri E.
    Wisniewska, Ewelina
    Braglia, Michele
    Stocker, Richard
    Shearing, Paul R.
    Brett, Dan J. L.
    Robinson, James B.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (04)
  • [32] The early warning for thermal runaway of lithium-ion batteries based on internal and external temperature model
    Jia, Teng
    Zhang, Ying
    Ma, Chuyuan
    Yu, Hang
    Hu, Sihang
    JOURNAL OF ENERGY STORAGE, 2024, 83
  • [33] Internal temperature estimation for lithium-ion batteries through distributed equivalent circuit network model
    Li, Shen
    Patel, Anisha N.
    Zhang, Cheng
    Amietszajew, Tazdin
    Kirkaldy, Niall
    Offer, Gregory J.
    Marinescu, Monica
    JOURNAL OF POWER SOURCES, 2024, 611
  • [34] Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures
    Zhang, Guangsheng
    Ge, Shanhai
    Xu, Terrence
    Yang, Xiao-Guang
    Tian, Hua
    Wang, Chao-Yang
    ELECTROCHIMICA ACTA, 2016, 218 : 149 - 155
  • [35] Online Internal Temperature Sensors in Lithium-Ion Batteries: State-of-the-Art and Future Trends
    Jinasena, Asanthi
    Spitthoff, Lena
    Wahl, Markus Solberg
    Lamb, Jacob Joseph
    Shearing, Paul R.
    Stromman, Anders Hammer
    Burheim, Odne Stokke
    FRONTIERS IN CHEMICAL ENGINEERING, 2022, 4
  • [36] Internal resistance and polarization dynamics of lithium-ion batteries upon internal shorting
    Noelle, Daniel J.
    Wang, Meng
    Le, Anh V.
    Shi, Yang
    Qiao, Yu
    APPLIED ENERGY, 2018, 212 : 796 - 808
  • [37] An Integrated Heater Equalizer for Lithium-Ion Batteries of Electric Vehicles
    Shang, Yunlong
    Zhu, Chong
    Fu, Yuhong
    Mi, Chunting Chris
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2019, 66 (06) : 4398 - 4405
  • [38] Sensor Fault Detection, Isolation, and Estimation in Lithium-Ion Batteries
    Dey, Satadru
    Mohon, Sara
    Pisu, Pierluigi
    Ayalew, Beshah
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2016, 24 (06) : 2141 - 2149
  • [39] Electrolytes for Lithium and Lithium-Ion Batteries
    Ball, Sarah
    JOHNSON MATTHEY TECHNOLOGY REVIEW, 2015, 59 (01): : 30 - 33
  • [40] Non-damaged lithium-ion batteries integrated functional electrode for operando temperature sensing
    Wang, Xiuwu
    Zhu, Jiangong
    Wei, Xuezhe
    Wang, Dekun
    Xu, Wentao
    Jin, Yiqun
    Dai, Haifeng
    ENERGY STORAGE MATERIALS, 2024, 65