Combination of a Rabbit Optimization Algorithm and a Deep-Learning-Based Convolutional Neural Network-Long Short-Term Memory-Attention Model for Arc Sag Prediction of Transmission Lines
被引:0
|
作者:
Ji, Xiu
论文数: 0引用数: 0
h-index: 0
机构:
Changchun Inst Technol, Future Ind Technol Innovat Inst, Changchun 130000, Peoples R ChinaChangchun Inst Technol, Future Ind Technol Innovat Inst, Changchun 130000, Peoples R China
Ji, Xiu
[1
]
Lu, Chengxiang
论文数: 0引用数: 0
h-index: 0
机构:
Changchun Univ Technol, Sch Elect & Elect Engn, Changchun 130000, Peoples R ChinaChangchun Inst Technol, Future Ind Technol Innovat Inst, Changchun 130000, Peoples R China
Lu, Chengxiang
[2
]
Xie, Beimin
论文数: 0引用数: 0
h-index: 0
机构:
State Grid Jilin Elect Power Co Ltd, Ultra High Voltage Co, Changchun 130000, Peoples R ChinaChangchun Inst Technol, Future Ind Technol Innovat Inst, Changchun 130000, Peoples R China
Xie, Beimin
[3
]
Guo, Haiyang
论文数: 0引用数: 0
h-index: 0
机构:
Changchun Univ Technol, Sch Elect & Elect Engn, Changchun 130000, Peoples R ChinaChangchun Inst Technol, Future Ind Technol Innovat Inst, Changchun 130000, Peoples R China
Guo, Haiyang
[2
]
Zheng, Boyang
论文数: 0引用数: 0
h-index: 0
机构:
Changchun Inst Technol, Sch Elect & Informat Engn, Changchun 130000, Peoples R ChinaChangchun Inst Technol, Future Ind Technol Innovat Inst, Changchun 130000, Peoples R China
Zheng, Boyang
[4
]
机构:
[1] Changchun Inst Technol, Future Ind Technol Innovat Inst, Changchun 130000, Peoples R China
[2] Changchun Univ Technol, Sch Elect & Elect Engn, Changchun 130000, Peoples R China
[3] State Grid Jilin Elect Power Co Ltd, Ultra High Voltage Co, Changchun 130000, Peoples R China
[4] Changchun Inst Technol, Sch Elect & Informat Engn, Changchun 130000, Peoples R China
transmission line arc sag;
attention mechanism;
CNN;
AROA;
D O I:
10.3390/electronics13234593
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Arc droop presents significant challenges in power system management due to its inherent complexity and dynamic nature. To address these challenges in predicting arc sag for transmission lines, this paper proposes an innovative time-series prediction model, AROA-CNN-LSTM-Attention(AROA-CLA). The model aims to enhance arc sag prediction by integrating a convolutional neural network (CNN), a long short-term memory network (LSTM), and an attention mechanism, while also utilizing, for the first time, the adaptive rabbit optimization algorithm (AROA) for CLA parameter tuning. This combination improves both the prediction performance and the generalization capability of the model. By effectively leveraging historical data and exhibiting superior time-series processing capabilities, the AROA-CLA model demonstrates excellent prediction accuracy and stability across different time scales. Experimental results show that, compared to traditional and other modern optimization models, AROA-CLA achieves significant improvements in RMSE, MAE, MedAE, and R2 metrics, particularly in reducing errors, accelerating convergence, and enhancing robustness. These findings confirm the effectiveness and applicability of the AROA-CLA model in arc droop prediction, offering novel approaches for transmission line monitoring and intelligent power system management.
机构:
Lanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou 730050, Peoples R China
Power Dispatch Ctr State Grid Gansu Elect Power Co, Lanzhou 730030, Peoples R ChinaLanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou 730050, Peoples R China
Wu, Guodong
Hu, Diangang
论文数: 0引用数: 0
h-index: 0
机构:
Power Dispatch Ctr State Grid Gansu Elect Power Co, Lanzhou 730030, Peoples R ChinaLanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou 730050, Peoples R China
Hu, Diangang
Zhang, Yongrui
论文数: 0引用数: 0
h-index: 0
机构:
Power Dispatch Ctr State Grid Gansu Elect Power Co, Lanzhou 730030, Peoples R ChinaLanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou 730050, Peoples R China
Zhang, Yongrui
Bao, Guangqing
论文数: 0引用数: 0
h-index: 0
机构:
SouthWest Petr Univ, Sch Elect & Informat Engn, Chengdu 610500, Peoples R ChinaLanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou 730050, Peoples R China
Bao, Guangqing
He, Ting
论文数: 0引用数: 0
h-index: 0
机构:
Gansu Nat Energy Res Inst, Lanzhou 730046, Peoples R ChinaLanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou 730050, Peoples R China
机构:
Xinjiang Survey & Design Inst Water Resources & Hy, Urumqi 830000, Peoples R ChinaXinjiang Survey & Design Inst Water Resources & Hy, Urumqi 830000, Peoples R China
Jia, Yunfu
Pei, Chengyuan
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Water Conservancy Dev & Construct Grp Co, Urumqi 830000, Peoples R ChinaXinjiang Survey & Design Inst Water Resources & Hy, Urumqi 830000, Peoples R China
Pei, Chengyuan
Dai, Mingjian
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Fac Engn, Wuhan 430074, Peoples R ChinaXinjiang Survey & Design Inst Water Resources & Hy, Urumqi 830000, Peoples R China
Dai, Mingjian
Che, Xuan
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Fac Engn, Wuhan 430074, Peoples R ChinaXinjiang Survey & Design Inst Water Resources & Hy, Urumqi 830000, Peoples R China
Che, Xuan
Zhang, Peng
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Geosci, Fac Engn, Wuhan 430074, Peoples R ChinaXinjiang Survey & Design Inst Water Resources & Hy, Urumqi 830000, Peoples R China
机构:
Indian Sch Mines, Indian Inst Technol, Dept Min Machinery Engn, Dhanbad 826004, Jharkhand, IndiaIndian Sch Mines, Indian Inst Technol, Dept Min Machinery Engn, Dhanbad 826004, Jharkhand, India
Prince
Hati, Ananda Shankar
论文数: 0引用数: 0
h-index: 0
机构:
Indian Sch Mines, Indian Inst Technol, Dept Min Machinery Engn, Dhanbad 826004, Jharkhand, IndiaIndian Sch Mines, Indian Inst Technol, Dept Min Machinery Engn, Dhanbad 826004, Jharkhand, India