A Convolutional Neural Network-Long Short-Term Memory-Attention Solar Photovoltaic Power Prediction-Correction Model Based on the Division of Twenty-Four Solar Terms

被引:0
|
作者
Wu, Guodong [1 ,2 ]
Hu, Diangang [2 ]
Zhang, Yongrui [2 ]
Bao, Guangqing [3 ]
He, Ting [4 ]
机构
[1] Lanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou 730050, Peoples R China
[2] Power Dispatch Ctr State Grid Gansu Elect Power Co, Lanzhou 730030, Peoples R China
[3] SouthWest Petr Univ, Sch Elect & Informat Engn, Chengdu 610500, Peoples R China
[4] Gansu Nat Energy Res Inst, Lanzhou 730046, Peoples R China
基金
中国国家自然科学基金;
关键词
forecasting; solar PV power; extreme weather; attention mechanism; CNN (convolutional neural network); LSTM (long short-term memory);
D O I
10.3390/en17225549
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The prevalence of extreme weather events gives rise to a significant degree of prediction bias in the forecasting of photovoltaic (PV) power. In order to enhance the precision of forecasting outcomes, this study examines the interrelationships between China's 24 conventional solar terms and extreme meteorological events. Additionally, it proposes a methodology for estimating the short-term generation of PV power based on the division of solar term time series. Firstly, given that the meteorological data from the same festival is more representative of the climate state at the current prediction moment, the sample data are grouped according to the 24 festival time nodes. Secondly, a convolutional neural network-long short-term memory (CNN-LSTM) PV power prediction model based on an Attention mechanism is proposed. This model extracts temporal change information from nonlinear sample data through LSTM, and a CNN link is added at the front end of LSTM to address the issue of LSTM being unable to obtain the spatial linkage of multiple features. Additionally, an Attention mechanism is incorporated at the back end of the CNN to obtain the feature information of crucial time steps, further reducing the multi-step prediction error. Concurrently, a PV power error prediction model is constructed to rectify the outcomes of the aforementioned prediction model. The examination of the measured data from PV power stations and the comparison and analysis with other prediction models demonstrate that the model presented in this paper can effectively enhance the accuracy of PV power predictions.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Combination of a Rabbit Optimization Algorithm and a Deep-Learning-Based Convolutional Neural Network-Long Short-Term Memory-Attention Model for Arc Sag Prediction of Transmission Lines
    Ji, Xiu
    Lu, Chengxiang
    Xie, Beimin
    Guo, Haiyang
    Zheng, Boyang
    ELECTRONICS, 2024, 13 (23):
  • [2] PREDICTION OF MECHANICAL PROPERTIES OF COMPOSITE MATERIALS BASED ON CONVOLUTIONAL NEURAL NETWORK-LONG AND SHORT-TERM MEMORY NEURAL NETWORK
    Huang, P.
    Dong, J. C.
    Han, X. C.
    Qi, Y. P.
    Xiao, Y. M.
    Leng, H. Y.
    METALURGIJA, 2024, 63 (3-4): : 369 - 372
  • [3] A Convolutional Long Short-Term Memory Neural Network Based Prediction Model
    Tian, Y. H.
    Wu, Q.
    Zhang, Y.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2020, 15 (05) : 1 - 12
  • [4] Urban Water Demand Prediction Based on Attention Mechanism Graph Convolutional Network-Long Short-Term Memory
    Liu, Chunjing
    Liu, Zhen
    Yuan, Jia
    Wang, Dong
    Liu, Xin
    WATER, 2024, 16 (06)
  • [5] Short-Term Photovoltaic Power Forecasting Based on Long Short Term Memory Neural Network and Attention Mechanism
    Zhou, Hangxia
    Zhang, Yujin
    Yang, Lingfan
    Liu, Qian
    Yan, Ke
    Du, Yang
    IEEE ACCESS, 2019, 7 : 78063 - 78074
  • [6] Solar Radiation Prediction Based on Convolution Neural Network and Long Short-Term Memory
    Zhu, Tingting
    Guo, Yiren
    Li, Zhenye
    Wang, Cong
    ENERGIES, 2021, 14 (24)
  • [7] Forecasting a Short-Term Photovoltaic Power Model Based on Improved Snake Optimization, Convolutional Neural Network, and Bidirectional Long Short-Term Memory Network
    Wang, Yonggang
    Yao, Yilin
    Zou, Qiuying
    Zhao, Kaixing
    Hao, Yue
    SENSORS, 2024, 24 (12)
  • [8] Prediction of Chinese energy structure based on Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM)
    Li, Yan
    He, Yaoyu
    Zhang, Meizhen
    ENERGY SCIENCE & ENGINEERING, 2020, 8 (08) : 2680 - 2689
  • [9] Remaining useful lifetime prediction methods of proton exchange membrane fuel cell based on convolutional neural network-long short-term memory and convolutional neural network-bidirectional long short-term memory
    Peng, Yulin
    Chen, Tao
    Xiao, Fei
    Zhang, Shaojie
    FUEL CELLS, 2023, 23 (01) : 75 - 87
  • [10] Prediction of solar irradiance using convolutional neural network and attention mechanism-based long short-term memory network based on similar day analysis and an attention mechanism
    Hou, Xinxing
    Ju, Chao
    Wang, Bo
    HELIYON, 2023, 9 (11)