A Data-Driven Remaining Useful Life Prediction Method for Power MOSFETs Considering Nonlinear Dynamical Behaviors

被引:0
|
作者
Yi, Jianmin [1 ]
Ma, Cunbao [1 ]
Wang, Hao [2 ]
机构
[1] Northwestern Polytech Univ, Sch Civil Aviat, Xian 710072, Peoples R China
[2] Xian Aeronaut Comp Tech Res Inst, Xian 710065, Peoples R China
关键词
MOSFET; Degradation; Temperature measurement; Semiconductor device modeling; Prognostics and health management; Aging; Long short term memory; Thermal conductivity; Stress; NASA; Largest Lyapunov exponent; power MOSFETs; power spectrum; remaining useful life (RUL); DEGRADATION; MECHANISMS;
D O I
10.1109/TED.2025.3543149
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Prognostic and health management (PHM) techniques for power MOSFETs are getting increasing attention recently. A variety of methods have been developed and implemented to conduct lifetime predictions for power MOSFETs. Nevertheless, most of the current studies seem to have limitations in a comprehensive understanding of the nonlinear dynamical degradation process. Single parameter-oriented prediction methods may ignore deeper dynamical behaviors during the degradation. Besides, the methods are incapable of tackling abnormal degradation paths such as a sudden rise. In view of the limitations, a data-driven prediction method taking into consideration the nonlinear dynamical behaviors is developed. To analyze nonlinear and chaotic properties, phase space reconstruction (PSR) is conducted on the time series degradation data. Then, the largest Lyapunov exponent and power spectrum are calculated against aging time. The evolution of nonlinear and chaotic behaviors during the degradation is investigated. Thereby, a novel health indicator (HI) taking into account nonlinear indices is constructed. Subsequently, a prediction method based on a long short-term memory (LSTM) network is proposed. The developed method is validated by an actual degradation dataset. The results show that the developed method is capable of addressing the limitations with desirable accuracies.
引用
收藏
页码:1885 / 1892
页数:8
相关论文
共 50 条
  • [31] Dynamic Data-Driven degradation method for monitoring remaining useful life of cutting tools
    Li, Yao
    Zhao, Zhengcai
    Fu, Yucan
    Cao, Shifeng
    MEASUREMENT, 2024, 237
  • [32] Data-Driven Method for Predicting Remaining Useful Life of Bearing Based on Bayesian Theory
    Gao, Tianhong
    Li, Yuxiong
    Huang, Xianzhen
    Wang, Changli
    SENSORS, 2021, 21 (01) : 1 - 17
  • [33] Remaining useful life prognostics for the rolling bearing based on a hybrid data-driven method
    Guo, Runxia
    Wang, Yingang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART I-JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, 2021, 235 (04) : 517 - 531
  • [34] Data-driven predictive maintenance framework considering the multi-source information fusion and uncertainty in remaining useful life prediction
    Xu, Qifa
    Wang, Zhiwei
    Jiang, Cuixia
    Jing, Zhenglei
    KNOWLEDGE-BASED SYSTEMS, 2024, 303
  • [35] A self-data-driven method for remaining useful life prediction of wind turbines considering continuously varying speeds
    Li, Naipeng
    Xu, Pengcheng
    Lei, Yaguo
    Cai, Xiao
    Kong, Detong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 165
  • [36] A review on physics-informed data-driven remaining useful life prediction: Challenges and opportunities
    Li, Huiqin
    Zhang, Zhengxin
    Li, Tianmei
    Si, Xiaosheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 209
  • [37] DATA-DRIVEN PREDICTION OF THE REMAINING USEFUL LIFE OF QFN COMPONENTS MOUNTED ON PRINTED CIRCUIT BOARDS
    Riegel, Daniel
    Gromala, Przemyslaw Jakub
    Rzepka, Sven
    2021 SMART SYSTEMS INTEGRATION (SSI), 2021,
  • [38] Data-Driven Remaining Useful Life Prediction to Plan Operations Shutdown and Maintenance of an Industrial Plant
    Bayesteh, Ali
    Li, Duanshun
    Lu, Ming
    COMPUTING IN CIVIL ENGINEERING 2019: SMART CITIES, SUSTAINABILITY, AND RESILIENCE, 2019, : 8 - 15
  • [39] Data-Driven Based Remaining Useful Life Prediction for Proton Exchange Membrane Fuel Cells
    Zhang X.
    Gao Y.
    Chen W.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2020, 55 (02): : 417 - 427
  • [40] Remaining Useful Life Prediction of Broken Rotor Bar Based on Data-Driven and Degradation Model
    Bejaoui, Islem
    Bruneo, Dario
    Xibilia, Maria Gabriella
    APPLIED SCIENCES-BASEL, 2021, 11 (16):