Thermodynamic Comparison between Conventional, Autothermal, and Sorption-Enhanced Bio-oil Steam Reforming

被引:0
|
作者
Megia, Pedro J. [1 ]
Rocha, Claudio [2 ,3 ]
Vizcaino, Arturo J. [1 ]
Carrero, Alicia [1 ,4 ]
Calles, Jose A. [1 ,4 ]
Madeira, Luis M. [2 ,3 ]
Soria, Miguel A. [2 ,3 ]
机构
[1] Rey Juan Carlos Univ, Chem & Environm Engn Grp, Mostoles 28933, Spain
[2] Univ Porto, Fac Engn, LEPABE Lab Proc Engn Environm Biotechnol & Energy, P-4200465 Porto, Portugal
[3] Univ Porto, Fac Engn, ALiCE Assoc Lab Chem Engn, P-4200465 Porto, Portugal
[4] Rey Juan Carlos Univ, Inst Sustainable Technol, Mostoles 28933, Spain
关键词
HYDROGEN-PRODUCTION; BIOMASS PYROLYSIS; ETHANOL;
D O I
10.1021/acs.energyfuels.4c05035
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study presents a comprehensive thermodynamic analysis comparing three bio-oil steam reforming processes: traditional steam reforming, autothermal reforming, and sorption-enhanced steam reforming. Using Aspen Plus V12.1 software, simulations were performed to evaluate the hydrogen production, energy requirements, and influence of key process variables such as the temperature, pressure, or steam-to-carbon ratio. While traditional steam reforming is capable of achieving high hydrogen production, it requires substantial external energy input to drive forward the reaction, given the endothermic nature of the reactions. In comparison, autothermal reforming allows thermally neutral conditions by integrating endothermic steam reforming with exothermic partial oxidation reactions. Although the energy requirements significantly decrease, it also leads to lower hydrogen yields due to its consumption in the oxidation processes. In contrast, sorption-enhanced steam reforming improves hydrogen production compared to the other configurations ascribed to the in situ CO2 capture by using sorbents that shift the equilibrium toward hydrogen with purities over 98%, thus minimizing the need for additional gas separation processes apart from reducing the CO and CH4 formation. Additionally, the exothermic nature of the CO2 capture reactions contributes to reducing the energy requirements or even generates excess energy at certain conditions that can be used as a heat source. The bio-oil composition showed minor variations in hydrogen yields, making these findings applicable to different bio-oil compositions.
引用
收藏
页码:1652 / 1667
页数:16
相关论文
共 50 条
  • [21] Thermodynamic analysis and reaction routes of steam reforming of bio-oil aqueous fraction
    Resende, K. A.
    Avila-Neto, C. N.
    Rabelo-Neto, R. C.
    Noronha, F. B.
    Hori, C. E.
    RENEWABLE ENERGY, 2015, 80 : 166 - 176
  • [22] Sorption-enhanced steam reforming of hydrocarbons with autothermal sorbent regeneration in a moving heat wave of a catalytic combustion reaction
    Zagoruiko, Andrey N.
    Okunev, Alexey G.
    REACTION KINETICS AND CATALYSIS LETTERS, 2007, 91 (02): : 315 - 324
  • [23] Catalysts for Steam Reforming of Bio-oil: A Review
    Chen, Jixiang
    Sun, Junming
    Wang, Yong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (16) : 4627 - 4637
  • [24] Energy-Efficient-Augmented Sorption-Enhanced Reforming for H2 Production from Bio-oil Model Compound
    Farhan, Helal Ahmad
    Sanjay
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025,
  • [25] Comparative analysis on sorption enhanced steam reforming and conventional steam reforming of hydroxyacetone for hydrogen production: Thermodynamic modeling
    Fu, Peng
    Yi, Weiming
    Li, Zhihe
    Li, Yanmei
    Wang, Jing
    Bai, Xueyuan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (27) : 11893 - 11901
  • [26] Tandem bed configuration for sorption-enhanced steam reforming of methane
    Reijers, H. Th J.
    Elzinga, G. D.
    Cobden, P. D.
    Haije, W. G.
    van den Brink, R. W.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2011, 5 (03) : 531 - 537
  • [27] Green hydrogen production from biomass - A thermodynamic assessment of the potential of conventional and advanced bio-oil steam reforming processes
    Singh, Piyush Pratap
    Jaswal, Anurag
    Singh, Rajan
    Mondal, Tarak
    Pant, K. K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 50 : 627 - 639
  • [28] Bio-oil steam reforming, partial oxidation or oxidative steam reforming coupled with bio-oil dry reforming to eliminate CO2 emission
    Hu, Xun
    Lu, Gongxuan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (13) : 7169 - 7176
  • [29] Comparison of the NiAl2O4 derived catalyst deactivation in the steam reforming and sorption enhanced steam reforming of raw bio-oil in packed and fluidized-bed reactors
    Landa, Leire
    Remiro, Aingeru
    Valle, Beatriz
    Bilbao, Javier
    Gayubo, Ana G.
    CHEMICAL ENGINEERING JOURNAL, 2023, 458
  • [30] Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds
    Esteban-Diez, G.
    Gil, Maria V.
    Pevida, C.
    Chen, D.
    Rubiera, F.
    APPLIED ENERGY, 2016, 177 : 579 - 590