Thermodynamic Comparison between Conventional, Autothermal, and Sorption-Enhanced Bio-oil Steam Reforming

被引:0
|
作者
Megia, Pedro J. [1 ]
Rocha, Claudio [2 ,3 ]
Vizcaino, Arturo J. [1 ]
Carrero, Alicia [1 ,4 ]
Calles, Jose A. [1 ,4 ]
Madeira, Luis M. [2 ,3 ]
Soria, Miguel A. [2 ,3 ]
机构
[1] Rey Juan Carlos Univ, Chem & Environm Engn Grp, Mostoles 28933, Spain
[2] Univ Porto, Fac Engn, LEPABE Lab Proc Engn Environm Biotechnol & Energy, P-4200465 Porto, Portugal
[3] Univ Porto, Fac Engn, ALiCE Assoc Lab Chem Engn, P-4200465 Porto, Portugal
[4] Rey Juan Carlos Univ, Inst Sustainable Technol, Mostoles 28933, Spain
关键词
HYDROGEN-PRODUCTION; BIOMASS PYROLYSIS; ETHANOL;
D O I
10.1021/acs.energyfuels.4c05035
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study presents a comprehensive thermodynamic analysis comparing three bio-oil steam reforming processes: traditional steam reforming, autothermal reforming, and sorption-enhanced steam reforming. Using Aspen Plus V12.1 software, simulations were performed to evaluate the hydrogen production, energy requirements, and influence of key process variables such as the temperature, pressure, or steam-to-carbon ratio. While traditional steam reforming is capable of achieving high hydrogen production, it requires substantial external energy input to drive forward the reaction, given the endothermic nature of the reactions. In comparison, autothermal reforming allows thermally neutral conditions by integrating endothermic steam reforming with exothermic partial oxidation reactions. Although the energy requirements significantly decrease, it also leads to lower hydrogen yields due to its consumption in the oxidation processes. In contrast, sorption-enhanced steam reforming improves hydrogen production compared to the other configurations ascribed to the in situ CO2 capture by using sorbents that shift the equilibrium toward hydrogen with purities over 98%, thus minimizing the need for additional gas separation processes apart from reducing the CO and CH4 formation. Additionally, the exothermic nature of the CO2 capture reactions contributes to reducing the energy requirements or even generates excess energy at certain conditions that can be used as a heat source. The bio-oil composition showed minor variations in hydrogen yields, making these findings applicable to different bio-oil compositions.
引用
收藏
页码:1652 / 1667
页数:16
相关论文
共 50 条
  • [1] Thermodynamic study for hydrogen production from bio-oil via sorption-enhanced steam reforming: Comparison with conventional steam reforming
    Xie, Huaqing
    Yu, Qingbo
    Lu, Han
    Zhang, Yuanyuan
    Zhang, Jianrong
    Qin, Qin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (08) : 28718 - 28731
  • [2] Hydrogen production via sorption-enhanced catalytic steam reforming of bio-oil
    Xie, Huaqing
    Yu, Qingbo
    Zuo, Zongliang
    Han, Zhicheng
    Yao, Xin
    Qin, Qin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (04) : 2345 - 2353
  • [3] Hydrogen production from bio-oil: A thermodynamic analysis of sorption-enhanced chemical looping steam reforming
    Spragg, J.
    Mahmud, T.
    Dupont, V.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (49) : 22032 - 22045
  • [4] Thermodynamic comparison between bio-oil and ethanol steam reforming
    Montero, Carolina
    Oar-Arteta, Lide
    Remiro, Aingeru
    Arandia, Aitor
    Bilbao, Javier
    Gayubo, Ana G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (46) : 15963 - 15971
  • [5] Autothermal sorption-enhanced steam reforming of bio-oil/biogas mixture and energy generation by fuel cells: Concept analysis and process simulation
    Iordanidis, A. A.
    Kechagiopoulos, P. N.
    Voutetakis, S. S.
    Lemonidou, A. A.
    Vasalos, I. A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (08) : 1058 - 1065
  • [6] Study on CO2 sorption-enhanced steam reforming of bio-oil model for hydrogen production
    Yu, Qing-Bo
    Yao, Xin
    Wu, Tian-Wei
    Xie, Hua-Qing
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2016, 37 (07): : 956 - 959
  • [7] Sorption-Enhanced Steam Reforming of Ethanol: Thermodynamic Comparison of CO2 Sorbents
    Wu, Yi-Jiang
    Diaz Alvarado, Felipe A.
    Santos, Joao C.
    Gracia, Francisco
    Cunha, Adelino F.
    Rodrigues, Alirio E.
    CHEMICAL ENGINEERING & TECHNOLOGY, 2012, 35 (05) : 847 - 858
  • [8] Performance analysis and temperature gradient of solid oxide fuel cell stacks operated with bio-oil sorption-enhanced steam reforming
    Wiranarongkorn, Kunlanan
    Banerjee, Aayan
    Deutschmann, Olaf
    Arpornwichanop, Amornchai
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (21) : 12108 - 12120
  • [9] Maximum Hydrogen Production by Autothermal Steam Reforming of Bio-oil With NiCuZnAl Catalyst
    Yan, Shi-zhi
    Zhai, Qi
    Li, Quan-xin
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2012, 25 (03) : 365 - 372
  • [10] Autothermal reforming of palm empty fruit bunch bio-oil: thermodynamic modelling
    Tande, Lifita N.
    Dupont, Valerie
    AIMS ENERGY, 2016, 4 (01) : 68 - 92