Deep-learning-derived input function in dynamic [18F]FDG PET imaging of mice

被引:0
|
作者
Kuttner, Samuel [1 ,2 ,3 ]
Luppino, Luigi T. [2 ]
Convert, Laurence [4 ,5 ]
Sarrhini, Otman [4 ,5 ]
Lecomte, Roger [4 ,5 ,6 ]
Kampffmeyer, Michael C. [2 ]
Sundset, Rune [1 ,3 ]
Jenssen, Robert [2 ]
机构
[1] Univ Hosp North Norway, PET Imaging Ctr, Tromso, Norway
[2] UiT Arctic Univ Norway, Dept Phys & Technol, UiT Machine Learning Grp, Tromso, Norway
[3] UiT Arctic Univ Norway, Dept Clin Med, Nucl Med & Radiat Biol Res Grp, Tromso, Norway
[4] Univ Sherbrooke, Sherbrooke Mol Imaging Ctr CRCHUS, Sherbrooke, PQ, Canada
[5] Univ Sherbrooke, Dept Nucl Med & Radiobiol, Sherbrooke, PQ, Canada
[6] Imaging Res & Technol Inc, Sherbrooke, PQ, Canada
来源
FRONTIERS IN NUCLEAR MEDICINE | 2024年 / 4卷
关键词
dynamic positron emission tomography (PET); small-animal PET 18F-FDG PET/CT; Patlak analysis; arterial input function estimation; glucose metabolism; deep learning; prediction model; SMALL-ANIMAL PET; PARTIAL-VOLUME CORRECTION; BRAIN TRANSFER CONSTANTS; GLUCOSE-METABOLISM; F-18-FDG PET; GRAPHICAL EVALUATION; BLOOD; ARTERIAL; QUANTIFICATION;
D O I
10.3389/fnume.2024.1372379
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Dynamic positron emission tomography and kinetic modeling play a critical role in tracer development research using small animals. Kinetic modeling from dynamic PET imaging requires accurate knowledge of an input function, ideally determined through arterial blood sampling. Arterial cannulation in mice, however, requires complex, time-consuming and terminal surgery, meaning that longitudinal studies are impossible. The aim of the current work was to develop and evaluate a non-invasive, deep-learning-based prediction model (DLIF) that directly takes the PET data as input to predict a usable input function. We first trained and evaluated the DLIF model on 68 [18F]Fluorodeoxyglucose mouse scans with image-derived targets using cross validation. Subsequently, we evaluated the performance of a trained DLIF model on an external dataset consisting of 8 mouse scans where the input function was measured by continuous arterial blood sampling. The results showed that the predicted DLIF and image-derived targets were similar, and the net influx rate constants following from Patlak modeling using DLIF as input function were strongly correlated to the corresponding values obtained using the image-derived input function. There were somewhat larger discrepancies when evaluating the model on the external dataset, which could be attributed to systematic differences in the experimental setup between the two datasets. In conclusion, our non-invasive DLIF prediction method may be a viable alternative to arterial blood sampling in small animal [18F]FDG imaging. With further validation, DLIF could overcome the need for arterial cannulation and allow fully quantitative and longitudinal experiments in PET imaging studies of mice.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Staging with [18F]FDG PET/CT
    Iqbal, Ramsha
    Aras, Tuba
    Mammatas, Lemonitsa
    Vogel, Wouter V.
    Oprea-Lager, Daniela E.
    Verheul, Hendrik M.
    Boellaard, Ronald
    van Oordt, Catharina W. Menke-van der Houven
    CANCER RESEARCH, 2019, 79 (13)
  • [42] Simplified quantification of small animal [18F]FDG PET studies using a standard arterial input function
    Meyer, Philipp T.
    Circiumaru, Valentina
    Cardi, Christopher A.
    Thomas, Daniel H.
    Bal, Harshali
    Acton, Paul D.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2006, 33 (08) : 948 - 954
  • [43] Simplified quantification of small animal [18F]FDG PET studies using a standard arterial input function
    Philipp T. Meyer
    Valentina Circiumaru
    Christopher A. Cardi
    Daniel H. Thomas
    Harshali Bal
    Paul D. Acton
    European Journal of Nuclear Medicine and Molecular Imaging, 2006, 33 : 948 - 954
  • [44] Deep Learning Denoising Improves and Homogenizes Patient [18F]FDG PET Image Quality in Digital PET/CT
    Weyts, Kathleen
    Quak, Elske
    Licaj, Idlir
    Ciappuccini, Renaud
    Lasnon, Charline
    Corroyer-Dulmont, Aurelien
    Foucras, Gauthier
    Bardet, Stephane
    Jaudet, Cyril
    DIAGNOSTICS, 2023, 13 (09)
  • [45] [18F]FDG PET and [18F]FP-CIT PET studies in Atypical Parkinsonism
    Kim, Su-Jeong
    Lee, Chong
    MOVEMENT DISORDERS, 2014, 29 : S89 - S89
  • [46] Deep Learning on 18F-FDG PET Imaging for Differential Diagnosis of Parkinsonian Syndromes
    Wu, Ping
    Roy, Abhijit Guha
    Yakushev, Igor
    Li, Rui
    Conjeti, Sailesh
    Ziegler, Sibylle
    Wang, Jian
    Forster, Stefan
    Navab, Nassir
    Schwaiger, Markus
    Huang, Sung-Cheng
    Romingers, Axel
    Zuo, Chuantao
    Shi, Kuangyu
    JOURNAL OF NUCLEAR MEDICINE, 2018, 59
  • [47] Quantification of Dynamic [18F]FDG Pet Studies in Acute Lung Injury
    Grecchi, Elisabetta
    Veronese, Mattia
    Moresco, Rosa Maria
    Bellani, Giacomo
    Pesenti, Antonio
    Messa, Cristina
    Bertoldo, Alessandra
    MOLECULAR IMAGING AND BIOLOGY, 2016, 18 (01) : 143 - 152
  • [48] Emerging Radiopharmaceuticals in Pet Imaging for Mesothelioma: A Review of [18F]FDG Alternatives
    Guglielmo, Priscilla
    Crivellaro, Cinzia
    Castello, Angelo
    Della Corte, Carminia Maria
    Pagano, Maria
    Marchesi, Silvia
    Occhipinti, Mario
    Zucali, Paolo Andrea
    Evangelista, Laura
    MOLECULAR DIAGNOSIS & THERAPY, 2025, 29 (01) : 55 - 66
  • [49] On the factors affecting the liver SUV in [18F]FDG PET/CT imaging
    Laffon, Eric
    de Clermont, Henri
    Marthan, Roger
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (03) : 650 - 651
  • [50] Quantification of Dynamic [18F]FDG Pet Studies in Acute Lung Injury
    Elisabetta Grecchi
    Mattia Veronese
    Rosa Maria Moresco
    Giacomo Bellani
    Antonio Pesenti
    Cristina Messa
    Alessandra Bertoldo
    Molecular Imaging and Biology, 2016, 18 : 143 - 152