Monolithic gold saturated on nanoporous gold@mirror template for highly reliable and fast surface-enhanced Raman scattering detection

被引:0
|
作者
Ahmad, Waqas [1 ]
Wang, Jingjing [1 ]
Wu, Xiaoxiao [1 ]
Zareef, Muhammad [2 ]
Adade, Selorm Yao-Say Solomon [1 ]
Xu, Yi [1 ]
Chen, Quansheng [1 ]
机构
[1] Jimei Univ, Coll Food & Biol Engn, Xiamen 361021, Peoples R China
[2] Jiangsu Univ, Sch Food & Biol Engn, Zhenjiang 212013, Peoples R China
来源
BIOSENSORS & BIOELECTRONICS | 2025年 / 268卷
关键词
Electrodeposition; Substrate reproducibility; Electrochemical programming; Au saturated nanoporous Au; SERS; MALACHITE GREEN; GLASSY-CARBON; NANOPARTICLES; SPECTROSCOPY;
D O I
10.1016/j.bios.2024.116929
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The primary challenge hindering the broad application of surface-enhanced Raman scattering (SERS) is the variability in substrate performance due to site differences, leading to unstable detection results. Thus, the current work reports the constant potential deposition of gold (Au) nanostructure on a hybrid nanoporous gold (npAu)-Au mirror template to generate highly stable monolithic Au-saturated npAu@Au-mirror substrate. By systematically adjusting electrochemical variables, different sizes, shapes, and nanogaps of Au nanostructure are generated with high-intensity electromagnetic field regions (hot junctions) for enhanced SERS response. The resulting reproducible and enhanced SERS response of the Au-saturated npAu@Au-mirror mainly originates from i) the precise control of potential and accumulation time (-0.3 V and t = 100 s) to generate uniform and symmetric particle size, dispersion, and nanogaps formation through the reduction, nucleation, and growth of Au nanoparticles; ii) free selective dealloying and complete immersion of Au50Ag50 to ensure identical conditions across the alloy surface. The metrics for substrate efficiency were evaluated for reproducibility (n = 100, RSD = 14.22%), signal stability (storage time 25 days and variation in batches and multiple synthesis runs) and enhancements (enhancement factor similar to 1.3 x 10(7)). The substrate was extended for the rapid and direct malachite green detection in fish samples with a detection limit of 1.7 x 10(-9) mol L-1 and good recoveries (96.69 +/- 2.18%similar to 98.51 +/- 0.63%). The monolithic Au-saturated npAu@Au-mirror substrate might be implemented for routine analysis of other target types in food safety-related applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Electrochemical Growth of Gold Nanostructures for Surface-Enhanced Raman Scattering
    Yang, Yu-Cheng
    Huang, Ting-Kai
    Chen, Yu-Liang
    Mevellec, Jean-Yves
    Lefrant, Serge
    Lee, Chi-Young
    Chiu, Hsin-Tien
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (05): : 1932 - 1939
  • [32] Surface-enhanced Raman scattering of hydroquinone assisted by gold nanorods
    Cabrera-Alonso, Rodrigo
    Guevara, Edgar
    Ramirez-Elias, Miguel G.
    Moncada, Benjamin
    Gonzalez, Francisco J.
    JOURNAL OF NANOPHOTONICS, 2019, 13 (03)
  • [33] Surface-enhanced Raman scattering spectroscopy via gold nanostars
    Esenturk, E. Nalbant
    Walker, A. R. Hight
    JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (01) : 86 - 91
  • [34] Biocompatible gold/silver nanostars for surface-enhanced Raman scattering
    Childs, Andre
    Vinogradova, Ekaterina
    Ruiz-Zepeda, Francisco
    Velazquez-Salazar, J. Jesus
    Jose-Yacaman, Miguel
    JOURNAL OF RAMAN SPECTROSCOPY, 2016, 47 (06) : 651 - 655
  • [35] Characterization of Labeled Gold Nanoparticles for Surface-Enhanced Raman Scattering
    Aldosari, Fahad M. M.
    MOLECULES, 2022, 27 (03):
  • [36] Surface-enhanced Raman scattering from polystyrene on gold clusters
    Anema, J. R.
    Brolo, A. G.
    Felten, A.
    Bittencourt, C.
    JOURNAL OF RAMAN SPECTROSCOPY, 2010, 41 (07) : 745 - 751
  • [37] Surface-Enhanced Raman Scattering Investigation of Hollow Gold Nanospheres
    Xie, Hai-nan
    Larmour, Iain A.
    Smith, W. Ewen
    Faulds, Karen
    Graham, Duncan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (14): : 8338 - 8342
  • [38] Surface-enhanced Raman scattering studies on aggregated gold nanorods
    Nikoobakht, B
    El-Sayed, MA
    JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (18): : 3372 - 3378
  • [39] Optimized surface-enhanced Raman scattering on gold nanoparticle arrays
    Félidj, N
    Aubard, J
    Lévi, G
    Krenn, JR
    Hohenau, A
    Schider, G
    Leitner, A
    Aussenegg, FR
    APPLIED PHYSICS LETTERS, 2003, 82 (18) : 3095 - 3097
  • [40] Ultra-Effective Methylene Blue Detection by Nanoporous Gold for Surface-Enhanced Raman Spectroscopy
    Huh, Yoonseo
    Ryu, Sangwoo
    ELECTRONIC MATERIALS LETTERS, 2025, 21 (02) : 260 - 267