PERSISTENCE PROPERTIES OF SOLUTIONS FOR MULTI-COMPONENT NOVIKOV EQUATIONS

被引:0
|
作者
Liu, Xin [1 ]
Wu, Xinglong [2 ]
机构
[1] Wuhan Univ Technol, Sch Math & Stat, Wuhan 430070, Peoples R China
[2] Guangdong Univ Foreign Studies, Sch Math & Stat, Guangzhou 510006, Peoples R China
关键词
Multi-component Novikov equation; asymptotic properties; logarithmic decay; algebraical decay; exponential decay; BI-HAMILTONIAN STRUCTURE; BLOW-UP PHENOMENA; GLOBAL EXISTENCE; WELL-POSEDNESS; WAVE SOLUTIONS; CAUCHY-PROBLEM;
D O I
10.58997/ejde.2025.27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate the asymptotic behavior of the solution for a multi-component Novikov equation in weighted Sobolev spaces. We introduce a set of weighted functions, and prove that the strong solution will retain the corresponding decay properties when the initial data U0(x) and its derivative U0,x(x) decay logarithmically, algebraically, and exponentially at infinity.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [31] Antimicrobial properties of a multi-component alloy
    Murray, Anne F.
    Bryan, Daniel
    Garfinkel, David A.
    Jorgensen, Cameron S.
    Tang, Nan
    Liyanage, W. L. N. C.
    Lass, Eric A.
    Yang, Ying
    Rack, Philip D.
    Denes, Thomas G.
    Gilbert, Dustin A.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [32] Persistence properties for the two-component Novikov equation in weighted Lp spaces
    Zhou, Shouming
    Yang, Li
    APPLICABLE ANALYSIS, 2019, 98 (11) : 2105 - 2117
  • [33] The multi-component classical-Boussinesq hierarchy of soliton equations and its multi-component integrable coupling system
    Xia, TC
    Yu, FJ
    Chen, DY
    CHAOS SOLITONS & FRACTALS, 2005, 23 (04) : 1163 - 1167
  • [34] Multi-component C-KdV hierarchy of soliton equations and its multi-component integrable coupling system
    Xia, TC
    Yu, FJ
    Chen, DY
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 42 (04) : 494 - 496
  • [36] Dispersive quantization and fractalization for multi-component dispersive equations
    Yin, Zihan
    Kang, Jing
    Qu, Changzheng
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 444
  • [37] An analytical solution to multi-component NAPL dissolution equations
    Hansen, Scott K.
    Kueper, Bernard H.
    ADVANCES IN WATER RESOURCES, 2007, 30 (03) : 382 - 388
  • [38] On the Maxwell-Stefan Equations for Multi-component Diffusion
    Verros, George D.
    Giovannopoulos, Fotios
    COMPUTATIONAL METHODS IN SCIENCE AND ENGINEERING, VOL 2: ADVANCES IN COMPUTATIONAL SCIENCE, 2009, 1148 : 262 - +
  • [39] Lie symmetry analysis, exact solutions, and conservation laws to multi-component nonlinear Schrodinger equations
    Bai, Yu-Shan
    Liu, Ya-Na
    Ma, Wen-Xiu
    NONLINEAR DYNAMICS, 2023, 111 (19) : 18439 - 18448
  • [40] Multi-component conserved Allen-Cahn equations
    Grasselli, Maurizio
    Poiatti, Andrea
    INTERFACES AND FREE BOUNDARIES, 2024, 26 (04) : 489 - 541