Economic Viability of Integrated CO2 Capture and Conversion

被引:0
|
作者
Kim, Yongwook [1 ]
Namdari, Marzieh [1 ]
Jewlal, Andrew M. L. [1 ]
Chen, Yifu [1 ]
Pimlott, Douglas J. D. [1 ]
Stolar, Monika [1 ]
Berlinguette, Curtis P. [1 ,2 ,3 ,4 ]
机构
[1] Univ British Columbia, Dept Chem, Vancouver, BC V6T 1Z1, Canada
[2] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
[3] Univ British Columbia, Stewart Blusson Quantum Matter Inst, Vancouver, BC V6T 1Z4, Canada
[4] Canadian Inst Adv Res CIFAR, Toronto, ON M5G 1M1, Canada
来源
ACS ENERGY LETTERS | 2024年 / 10卷 / 01期
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
BICARBONATE; AIR;
D O I
10.1021/acsenergylett.4c02852
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The capture of CO2 using alkaline solutions requires significant thermal energy to release CO2 from a (bi)carbonate-enriched solution. This release of CO2 can instead be performed electrochemically with a "bicarbonate electrolyzer". The bicarbonate electrolyzer forms acid equivalents to convert a (bi)carbonate-enriched eluent from a CO2 capture unit into CO2 and, in turn, an upgraded carbon product such as CO and ethylene. There exists a tension for this closed-loop cycle to be put into practice: a smaller CO2 capture unit is required when using a more caustic CO2 capture solution, yet the electrolyzer works more effectively at a lower pH. Here, we elaborate on three different methods to align different pH regimes to couple air capture to CO2 electrolysis. We also use a mass-balance model to assess the commercial viability of a reactive carbon capture system that integrates the CO2 capture unit with a bicarbonate electrolyzer to show a levelized CO breakeven price below $1 kgCO -1. These economics, coupled with the other practical advantages of providing an electrolyzer with a liquid feedstock, present a compelling case for reactive carbon capture.
引用
收藏
页码:403 / 409
页数:7
相关论文
共 50 条
  • [31] Integrated CO2 Capture and Conversion as an Efficient Process for Fuels from Greenhouse Gases
    Kim, Sung Min
    Abdala, Paula M.
    Broda, Marcin
    Hosseini, Davood
    Coperet, Christophe
    Mueller, Christoph
    ACS CATALYSIS, 2018, 8 (04): : 2815 - 2823
  • [32] Supported oxides for methane conversion with integrated CO2 capture: Activation and deactivation studies
    Galinsky, Nathan
    Li, Fanxing
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [33] A State-of-the-Art Update on Integrated CO2 Capture and Electrochemical Conversion Systems
    Gutierrez-Sanchez, Oriol
    Bohlen, Barbara
    Daems, Nick
    Bulut, Metin
    Pant, Deepak
    Breugelmans, Tom
    CHEMELECTROCHEM, 2022, 9 (05)
  • [34] Which will be a promising route among integrated CO2 capture and conversion to valuable chemicals
    Xie, Zhicheng
    Tan, Zhenfeng
    Wang, Kewen
    Shao, Bin
    Zhu, Yuanming
    Li, Jingkun
    Mao, Yuanhong
    Hu, Jun
    ENERGY CONVERSION AND MANAGEMENT, 2025, 323
  • [35] Author Correction: Coupling electrochemical CO2 conversion with CO2 capture
    Ian Sullivan
    Andrey Goryachev
    Ibadillah A. Digdaya
    Xueqian Li
    Harry A. Atwater
    David A. Vermaas
    Chengxiang Xiang
    Nature Catalysis, 2022, 5 : 75 - 76
  • [36] Scaling CO2 Capture With Downstream Flow CO2 Conversion to Ethanol
    Pace, Grant
    Sheehan, Stafford W.
    FRONTIERS IN CLIMATE, 2021, 3
  • [37] Economic assessment of CO2 capture and disposal
    Eckaus, RS
    Jacoby, HD
    Ellerman, AD
    Leung, WC
    Yang, Z
    ENERGY CONVERSION AND MANAGEMENT, 1997, 38 : S621 - S627
  • [38] Economic modeling of CO2 capture and sequestration
    Biggs, S
    Herzog, H
    Reilly, J
    Jacoby, H
    GREENHOUSE GAS CONTROL TECHNOLOGIES, 2001, : 973 - 978
  • [39] Economic assessment of integrated coal gasification combined cycle with sorbent CO2 capture
    Esmaili, Ehsan
    Mostafavi, Ehsan
    Mahinpey, Nader
    APPLIED ENERGY, 2016, 169 : 341 - 352
  • [40] Integrated Economic Model CO2 Capture, Transport, ECBM and Saline Aquifer Storage
    Faltinson, John
    Gunter, Bill
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 4001 - 4005