CORRELATION STUDY BETWEEN THE IN-SITU THERMAL SIGNATURES AND SURFACE ROUGHNESS PRODUCED BY LASER POWDER BED FUSION

被引:0
|
作者
Yan, Dongqing [1 ]
Pasebani, Somayeh [1 ]
Fan, Zhaoyan [1 ]
机构
[1] Oregon State Univ, Sch Mech Ind & Mfg Engn, Corvallis, OR 97331 USA
关键词
Laser Powder Bed Fusion; In-situ Monitoring; Surface Roughness; ANN; QUALITY;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser Powder Bed Fusion (LPBF) is one of the prominent additive manufacturing methods developed in the last decades to fabricate metal parts with high geometric resolution. To fully leverage the advantages of LPBF, it is generally desired to produce low-roughness surfaces to minimize the efforts in post-process machining. However, understanding the formation of the surface roughness remains obscure due to the complexity of the fabrication process. This paper presents a machine-learning approach to monitor the surface roughness in-situ using a high-speed infrared (IR) camera observing the printed tracks during LPBF process. Thermal signatures such as temperature gradient surrounding the melt pool in different orientations, maximum temperature, and maximum temperature standard deviations were extracted from the IR images and compared with the local surface roughness. Experimental studies have been conducted to train and validate the model. The results have shown good correlations between the temperature gradient and the roughness.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] In-situ manufacturing of ODS FeCrAlY alloy via laser powder bed fusion
    Mirzababaei, Saereh
    Ghayoor, Milad
    Doyle, Ryan P.
    Pasebani, Somayeh
    MATERIALS LETTERS, 2021, 284
  • [22] Characterization of in-situ measurements based on layerwise imaging in laser powder bed fusion
    Caltanissetta, Fabio
    Grasso, Marco
    Petro, Stefano
    Colosimo, Bianca Maria
    ADDITIVE MANUFACTURING, 2018, 24 : 183 - 199
  • [23] Homogenization of an Al alloy processed by laser powder bed fusion in-situ alloying
    Bosio, Federico
    Manfredi, Diego
    Lombardi, Mariangela
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 904
  • [24] In-situ alloying in powder bed fusion: The role of powder morphology
    Knieps, Marius S.
    Reynolds, William J.
    Dejaune, Juliette
    Clare, Adam T.
    Evirgen, Alper
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 807
  • [25] META-DATA FOR IN-SITU MONITORING OF LASER POWDER BED FUSION PROCESSES
    Feng, Shaw C.
    Lu, Yan
    Jones, Albert T.
    PROCEEDINGS OF THE ASME 2020 15TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE (MSEC2020), VOL 1A, 2020,
  • [26] In-situ monitoring techniques for laser powder bed fusion additive manufacturing:a review
    Li Z.
    Zhang Y.
    Zhong K.
    Shi Y.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50 (12): : 1 - 9and27
  • [27] Active thermography for in-situ defect detection in laser powder bed fusion of metal
    Hoefflin, Dennis
    Sauer, Christian
    Schiffler, Andreas
    Versch, Alexander
    Hartmann, Juergen
    JOURNAL OF MANUFACTURING PROCESSES, 2024, 131 : 1758 - 1769
  • [28] Effect of powder and process parameters on in-situ alloying of nitinol during laser powder bed fusion
    Bourke, Declan
    Selvam, Karthikeyan Tamil
    Obeidi, Muhannad Ahmed
    Ul Ahad, Inam
    Brabazon, Dermot
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 30 : 7988 - 7997
  • [29] Roughness and Near-Surface Porosity of Unsupported Overhangs Produced by High-Speed Laser Powder Bed Fusion
    Shange, Mfanufikile
    Yadroitsava, Ina
    du Plessis, Anton
    Yadroitsev, Igor
    3D PRINTING AND ADDITIVE MANUFACTURING, 2022, 9 (04) : 288 - 300
  • [30] In-situ measurement methods for microscale surface impurities in powder bed fusion: a review
    Koca, Ahmet
    Hooshmand, Helia
    Leach, Richard
    Liu, Mingyu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)